File size: 6,765 Bytes
a7035da
626b25c
41cb4a2
626b25c
41cb4a2
626b25c
 
 
 
 
a7035da
e00a381
a7035da
626b25c
 
 
 
 
 
 
 
 
41cb4a2
 
a7035da
626b25c
a7035da
 
 
 
 
 
 
 
 
 
626b25c
a7035da
 
 
626b25c
a7035da
 
 
 
 
 
626b25c
a7035da
 
 
626b25c
a7035da
 
 
 
 
 
626b25c
a7035da
 
 
626b25c
a7035da
 
 
 
 
 
 
 
626b25c
a7035da
 
 
626b25c
a7035da
 
 
 
 
 
626b25c
a7035da
 
 
626b25c
a7035da
 
 
 
 
 
 
626b25c
 
a7035da
 
626b25c
a7035da
 
 
626b25c
a7035da
 
626b25c
a7035da
 
626b25c
a7035da
626b25c
 
a7035da
 
626b25c
a7035da
 
 
626b25c
a7035da
 
 
 
 
626b25c
a7035da
626b25c
 
a7035da
 
3839c42
a7035da
 
 
 
 
 
 
626b25c
 
 
 
 
 
 
 
 
f3172b2
626b25c
 
3839c42
626b25c
3839c42
 
 
 
 
 
 
 
 
 
 
 
 
626b25c
3839c42
a7035da
626b25c
e00a381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7035da
626b25c
a7035da
41cb4a2
626b25c
 
 
 
 
 
41cb4a2
 
 
 
3839c42
41cb4a2
 
 
 
e00a381
 
 
 
626b25c
f3172b2
 
626b25c
 
 
f3172b2
 
 
 
a7035da
 
f3172b2
a7035da
 
f3172b2
 
a7035da
 
 
 
 
 
 
 
41cb4a2
626b25c
41cb4a2
 
626b25c
 
62b4916
e00a381
41cb4a2
626b25c
41cb4a2
 
626b25c
 
 
 
f3172b2
 
626b25c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""LangGraph Agent"""

import os

from dotenv import load_dotenv
from langchain.tools.retriever import create_retriever_tool
from langchain_community.document_loaders import ArxivLoader, WikipediaLoader

# https://python.langchain.com.cn/docs/modules/data_connection/text_embedding/integrations/sentence_transformers
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langchain_core.tools import tool

# pip install -qU  langchain_milvus
# pip install arxiv
# pip install pymupdf
from langchain_milvus import Milvus
from langchain_openai import ChatOpenAI
from langfuse.langchain import CallbackHandler
from langgraph.graph import START, MessagesState, StateGraph
from langgraph.prebuilt import ToolNode, tools_condition

load_dotenv()


@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.

    Args:
        a: first int
        b: second int
    """
    return a * b


@tool
def add(a: int, b: int) -> int:
    """Add two numbers.

    Args:
        a: first int
        b: second int
    """
    return a + b


@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.

    Args:
        a: first int
        b: second int
    """
    return a - b


@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.

    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b


@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.

    Args:
        a: first int
        b: second int
    """
    return a % b


@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.

    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"wiki_results": formatted_search_docs}


@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.

    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(input=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc["url"]}" />\n{doc["content"]}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"web_results": formatted_search_docs}


@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.

    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["Title"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"arvix_results": formatted_search_docs}


# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)

URI = "./milvus_example.db"

# https://zhuanlan.zhihu.com/p/29949362142
embedding_function = SentenceTransformerEmbeddings(model_name="moka-ai/m3e-base")

vector_store = Milvus(
    embedding_function=embedding_function,
    connection_args={"uri": URI},
    collection_name="documents",
)

retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="QuestionSearch",
    description="A tool to retrieve similar questions from a vector store.",
)


tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
    retriever_tool,
]


def clean_think_tags(text: str) -> str:
    """qwen3 清理字符串中的<think>标签及其内容

    Args:
        text: 输入的字符串

    Returns:
        清理后的字符串
    """
    import re

    pattern = r"<think>.*?</think>\s*\n?"
    return re.sub(pattern, "", text, flags=re.DOTALL)


# Build graph function
def build_graph(provider: str = "openai"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "openai":
        llm = ChatOpenAI(
            model=os.environ["OPENAI_MODEL"],
            base_url=os.environ["OPENAI_BASE_URL"],
            api_key=os.environ["OPENAI_API_KEY"],
            temperature=0,
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # Node
    def assistant(state: MessagesState):
        """Assistant node"""
        _msg = llm_with_tools.invoke(state["messages"])
        if isinstance(_msg, AIMessage):
            _msg.content = clean_think_tags(_msg.content)
        return {"messages": [_msg]}

    def retriever(state: MessagesState):
        """Retriever node"""
        similar_question = vector_store.similarity_search(
            state["messages"][0].content, k=1
        )
        example_msg = HumanMessage(
            content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
        )
        return {"messages": [sys_msg] + state["messages"] + [example_msg]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()


# test
if __name__ == "__main__":
    langfuse_handler = CallbackHandler()

    question = "What country had the least number of athletes at the 1928 Summer Olympics? If there's a tie for a number of athletes, return the first in alphabetical order. Give the IOC country code as your answer."
    question = "1+1="
    # Build the graph
    graph = build_graph(provider="openai")
    # Run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke(
        input={"messages": messages},
        config={"callbacks": [langfuse_handler]},
    )
    for m in messages["messages"]:
        m.pretty_print()

# https://huggingface.co/spaces/agents-course/Unit4-Final-Certificate