Spaces:
Runtime error
Runtime error
File size: 6,765 Bytes
a7035da 626b25c 41cb4a2 626b25c 41cb4a2 626b25c a7035da e00a381 a7035da 626b25c 41cb4a2 a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 626b25c a7035da 3839c42 a7035da 626b25c f3172b2 626b25c 3839c42 626b25c 3839c42 626b25c 3839c42 a7035da 626b25c e00a381 a7035da 626b25c a7035da 41cb4a2 626b25c 41cb4a2 3839c42 41cb4a2 e00a381 626b25c f3172b2 626b25c f3172b2 a7035da f3172b2 a7035da f3172b2 a7035da 41cb4a2 626b25c 41cb4a2 626b25c 62b4916 e00a381 41cb4a2 626b25c 41cb4a2 626b25c f3172b2 626b25c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langchain.tools.retriever import create_retriever_tool
from langchain_community.document_loaders import ArxivLoader, WikipediaLoader
# https://python.langchain.com.cn/docs/modules/data_connection/text_embedding/integrations/sentence_transformers
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langchain_core.tools import tool
# pip install -qU langchain_milvus
# pip install arxiv
# pip install pymupdf
from langchain_milvus import Milvus
from langchain_openai import ChatOpenAI
from langfuse.langchain import CallbackHandler
from langgraph.graph import START, MessagesState, StateGraph
from langgraph.prebuilt import ToolNode, tools_condition
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(input=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc["url"]}" />\n{doc["content"]}\n</Document>'
for doc in search_docs
]
)
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["Title"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
URI = "./milvus_example.db"
# https://zhuanlan.zhihu.com/p/29949362142
embedding_function = SentenceTransformerEmbeddings(model_name="moka-ai/m3e-base")
vector_store = Milvus(
embedding_function=embedding_function,
connection_args={"uri": URI},
collection_name="documents",
)
retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="QuestionSearch",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
retriever_tool,
]
def clean_think_tags(text: str) -> str:
"""qwen3 清理字符串中的<think>标签及其内容
Args:
text: 输入的字符串
Returns:
清理后的字符串
"""
import re
pattern = r"<think>.*?</think>\s*\n?"
return re.sub(pattern, "", text, flags=re.DOTALL)
# Build graph function
def build_graph(provider: str = "openai"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "openai":
llm = ChatOpenAI(
model=os.environ["OPENAI_MODEL"],
base_url=os.environ["OPENAI_BASE_URL"],
api_key=os.environ["OPENAI_API_KEY"],
temperature=0,
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
_msg = llm_with_tools.invoke(state["messages"])
if isinstance(_msg, AIMessage):
_msg.content = clean_think_tags(_msg.content)
return {"messages": [_msg]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(
state["messages"][0].content, k=1
)
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
langfuse_handler = CallbackHandler()
question = "What country had the least number of athletes at the 1928 Summer Olympics? If there's a tie for a number of athletes, return the first in alphabetical order. Give the IOC country code as your answer."
question = "1+1="
# Build the graph
graph = build_graph(provider="openai")
# Run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke(
input={"messages": messages},
config={"callbacks": [langfuse_handler]},
)
for m in messages["messages"]:
m.pretty_print()
# https://huggingface.co/spaces/agents-course/Unit4-Final-Certificate
|