Spaces:
Build error
Build error
File size: 9,469 Bytes
1865436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
from __future__ import division, print_function, absolute_import
import argparse
import os
import cv2
import numpy as np
from application_util import preprocessing
from application_util import visualization
from deep_sort import nn_matching
from deep_sort.detection import Detection
from deep_sort.tracker import Tracker
def gather_sequence_info(sequence_dir, detection_file):
"""Gather sequence information, such as image filenames, detections,
groundtruth (if available).
Parameters
----------
sequence_dir : str
Path to the MOTChallenge sequence directory.
detection_file : str
Path to the detection file.
Returns
-------
Dict
A dictionary of the following sequence information:
* sequence_name: Name of the sequence
* image_filenames: A dictionary that maps frame indices to image
filenames.
* detections: A numpy array of detections in MOTChallenge format.
* groundtruth: A numpy array of ground truth in MOTChallenge format.
* image_size: Image size (height, width).
* min_frame_idx: Index of the first frame.
* max_frame_idx: Index of the last frame.
"""
image_dir = os.path.join(sequence_dir, "img1")
image_filenames = {
int(os.path.splitext(f)[0]): os.path.join(image_dir, f)
for f in os.listdir(image_dir)}
groundtruth_file = os.path.join(sequence_dir, "gt/gt.txt")
detections = None
if detection_file is not None:
detections = np.load(detection_file)
groundtruth = None
if os.path.exists(groundtruth_file):
groundtruth = np.loadtxt(groundtruth_file, delimiter=',')
if len(image_filenames) > 0:
image = cv2.imread(next(iter(image_filenames.values())),
cv2.IMREAD_GRAYSCALE)
image_size = image.shape
else:
image_size = None
if len(image_filenames) > 0:
min_frame_idx = min(image_filenames.keys())
max_frame_idx = max(image_filenames.keys())
else:
min_frame_idx = int(detections[:, 0].min())
max_frame_idx = int(detections[:, 0].max())
info_filename = os.path.join(sequence_dir, "seqinfo.ini")
if os.path.exists(info_filename):
with open(info_filename, "r") as f:
line_splits = [l.split('=') for l in f.read().splitlines()[1:]]
info_dict = dict(
s for s in line_splits if isinstance(s, list) and len(s) == 2)
update_ms = 1000 / int(info_dict["frameRate"])
else:
update_ms = None
feature_dim = detections.shape[1] - 10 if detections is not None else 0
seq_info = {
"sequence_name": os.path.basename(sequence_dir),
"image_filenames": image_filenames,
"detections": detections,
"groundtruth": groundtruth,
"image_size": image_size,
"min_frame_idx": min_frame_idx,
"max_frame_idx": max_frame_idx,
"feature_dim": feature_dim,
"update_ms": update_ms
}
return seq_info
def create_detections(detection_mat, frame_idx, min_height=0):
"""Create detections for given frame index from the raw detection matrix.
Parameters
----------
detection_mat : ndarray
Matrix of detections. The first 10 columns of the detection matrix are
in the standard MOTChallenge detection format. In the remaining columns
store the feature vector associated with each detection.
frame_idx : int
The frame index.
min_height : Optional[int]
A minimum detection bounding box height. Detections that are smaller
than this value are disregarded.
Returns
-------
List[tracker.Detection]
Returns detection responses at given frame index.
"""
frame_indices = detection_mat[:, 0].astype(np.int)
mask = frame_indices == frame_idx
detection_list = []
for row in detection_mat[mask]:
bbox, confidence, feature = row[2:6], row[6], row[10:]
if bbox[3] < min_height:
continue
detection_list.append(Detection(bbox, confidence, feature))
return detection_list
def run(sequence_dir, detection_file, output_file, min_confidence,
nms_max_overlap, min_detection_height, max_cosine_distance,
nn_budget, display):
"""Run multi-target tracker on a particular sequence.
Parameters
----------
sequence_dir : str
Path to the MOTChallenge sequence directory.
detection_file : str
Path to the detections file.
output_file : str
Path to the tracking output file. This file will contain the tracking
results on completion.
min_confidence : float
Detection confidence threshold. Disregard all detections that have
a confidence lower than this value.
nms_max_overlap: float
Maximum detection overlap (non-maxima suppression threshold).
min_detection_height : int
Detection height threshold. Disregard all detections that have
a height lower than this value.
max_cosine_distance : float
Gating threshold for cosine distance metric (object appearance).
nn_budget : Optional[int]
Maximum size of the appearance descriptor gallery. If None, no budget
is enforced.
display : bool
If True, show visualization of intermediate tracking results.
"""
seq_info = gather_sequence_info(sequence_dir, detection_file)
metric = nn_matching.NearestNeighborDistanceMetric(
"cosine", max_cosine_distance, nn_budget)
tracker = Tracker(metric)
results = []
def frame_callback(vis, frame_idx):
print("Processing frame %05d" % frame_idx)
# Load image and generate detections.
detections = create_detections(
seq_info["detections"], frame_idx, min_detection_height)
detections = [d for d in detections if d.confidence >= min_confidence]
# Run non-maxima suppression.
boxes = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
indices = preprocessing.non_max_suppression(
boxes, nms_max_overlap, scores)
detections = [detections[i] for i in indices]
# Update tracker.
tracker.predict()
tracker.update(detections)
# Update visualization.
if display:
image = cv2.imread(
seq_info["image_filenames"][frame_idx], cv2.IMREAD_COLOR)
vis.set_image(image.copy())
vis.draw_detections(detections)
vis.draw_trackers(tracker.tracks)
# Store results.
for track in tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
bbox = track.to_tlwh()
results.append([
frame_idx, track.track_id, bbox[0], bbox[1], bbox[2], bbox[3]])
# Run tracker.
if display:
visualizer = visualization.Visualization(seq_info, update_ms=5)
else:
visualizer = visualization.NoVisualization(seq_info)
visualizer.run(frame_callback)
# Store results.
f = open(output_file, 'w')
for row in results:
print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1' % (
row[0], row[1], row[2], row[3], row[4], row[5]),file=f)
def bool_string(input_string):
if input_string not in {"True","False"}:
raise ValueError("Please Enter a valid Ture/False choice")
else:
return (input_string == "True")
def parse_args():
""" Parse command line arguments.
"""
parser = argparse.ArgumentParser(description="Deep SORT")
parser.add_argument(
"--sequence_dir", help="Path to MOTChallenge sequence directory",
default=None, required=True)
parser.add_argument(
"--detection_file", help="Path to custom detections.", default=None,
required=True)
parser.add_argument(
"--output_file", help="Path to the tracking output file. This file will"
" contain the tracking results on completion.",
default="/tmp/hypotheses.txt")
parser.add_argument(
"--min_confidence", help="Detection confidence threshold. Disregard "
"all detections that have a confidence lower than this value.",
default=0.8, type=float)
parser.add_argument(
"--min_detection_height", help="Threshold on the detection bounding "
"box height. Detections with height smaller than this value are "
"disregarded", default=0, type=int)
parser.add_argument(
"--nms_max_overlap", help="Non-maxima suppression threshold: Maximum "
"detection overlap.", default=1.0, type=float)
parser.add_argument(
"--max_cosine_distance", help="Gating threshold for cosine distance "
"metric (object appearance).", type=float, default=0.2)
parser.add_argument(
"--nn_budget", help="Maximum size of the appearance descriptors "
"gallery. If None, no budget is enforced.", type=int, default=None)
parser.add_argument(
"--display", help="Show intermediate tracking results",
default=True, type=bool_string)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
run(
args.sequence_dir, args.detection_file, args.output_file,
args.min_confidence, args.nms_max_overlap, args.min_detection_height,
args.max_cosine_distance, args.nn_budget, args.display) |