File size: 7,635 Bytes
1865436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) Facebook, Inc. and its affiliates.
import unittest
import torch
from torch import Tensor

from detectron2.export.torchscript import patch_instances
from detectron2.structures import Boxes, Instances
from detectron2.utils.env import TORCH_VERSION
from detectron2.utils.testing import convert_scripted_instances


class TestInstances(unittest.TestCase):
    def test_int_indexing(self):
        attr1 = torch.tensor([[0.0, 0.0, 1.0], [0.0, 0.0, 0.5], [0.0, 0.0, 1.0], [0.0, 0.5, 0.5]])
        attr2 = torch.tensor([0.1, 0.2, 0.3, 0.4])
        instances = Instances((100, 100))
        instances.attr1 = attr1
        instances.attr2 = attr2
        for i in range(-len(instances), len(instances)):
            inst = instances[i]
            self.assertEqual((inst.attr1 == attr1[i]).all(), True)
            self.assertEqual((inst.attr2 == attr2[i]).all(), True)

        self.assertRaises(IndexError, lambda: instances[len(instances)])
        self.assertRaises(IndexError, lambda: instances[-len(instances) - 1])

    @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version")
    def test_script_new_fields(self):
        def get_mask(x: Instances) -> torch.Tensor:
            return x.mask

        class f(torch.nn.Module):
            def forward(self, x: Instances):
                proposal_boxes = x.proposal_boxes  # noqa F841
                objectness_logits = x.objectness_logits  # noqa F841
                return x

        class g(torch.nn.Module):
            def forward(self, x: Instances):
                return get_mask(x)

        class g2(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.g = g()

            def forward(self, x: Instances):
                proposal_boxes = x.proposal_boxes  # noqa F841
                return x, self.g(x)

        fields = {"proposal_boxes": Boxes, "objectness_logits": Tensor}
        with patch_instances(fields):
            torch.jit.script(f())

        # can't script anymore after exiting the context
        with self.assertRaises(Exception):
            # will create a ConcreteType for g
            torch.jit.script(g2())

        new_fields = {"mask": Tensor}
        with patch_instances(new_fields):
            # will compile g with a different Instances; this should pass
            torch.jit.script(g())
            with self.assertRaises(Exception):
                torch.jit.script(g2())

        new_fields = {"mask": Tensor, "proposal_boxes": Boxes}
        with patch_instances(new_fields) as NewInstances:
            # get_mask will be compiled with a different Instances; this should pass
            scripted_g2 = torch.jit.script(g2())
            x = NewInstances((3, 4))
            x.mask = torch.rand(3)
            x.proposal_boxes = Boxes(torch.rand(3, 4))
            scripted_g2(x)  # it should accept the new Instances object and run successfully

    @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version")
    def test_script_access_fields(self):
        class f(torch.nn.Module):
            def forward(self, x: Instances):
                proposal_boxes = x.proposal_boxes
                objectness_logits = x.objectness_logits
                return proposal_boxes.tensor + objectness_logits

        fields = {"proposal_boxes": Boxes, "objectness_logits": Tensor}
        with patch_instances(fields):
            torch.jit.script(f())

    @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version")
    def test_script_len(self):
        class f(torch.nn.Module):
            def forward(self, x: Instances):
                return len(x)

        class g(torch.nn.Module):
            def forward(self, x: Instances):
                return len(x)

        image_shape = (15, 15)

        fields = {"proposal_boxes": Boxes}
        with patch_instances(fields) as new_instance:
            script_module = torch.jit.script(f())
            x = new_instance(image_shape)
            with self.assertRaises(Exception):
                script_module(x)
            box_tensors = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]])
            x.proposal_boxes = Boxes(box_tensors)
            length = script_module(x)
            self.assertEqual(length, 2)

        fields = {"objectness_logits": Tensor}
        with patch_instances(fields) as new_instance:
            script_module = torch.jit.script(g())
            x = new_instance(image_shape)
            objectness_logits = torch.tensor([1.0]).reshape(1, 1)
            x.objectness_logits = objectness_logits
            length = script_module(x)
            self.assertEqual(length, 1)

    @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version")
    def test_script_has(self):
        class f(torch.nn.Module):
            def forward(self, x: Instances):
                return x.has("proposal_boxes")

        image_shape = (15, 15)
        fields = {"proposal_boxes": Boxes}
        with patch_instances(fields) as new_instance:
            script_module = torch.jit.script(f())
            x = new_instance(image_shape)
            self.assertFalse(script_module(x))

            box_tensors = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]])
            x.proposal_boxes = Boxes(box_tensors)
            self.assertTrue(script_module(x))

    @unittest.skipIf(TORCH_VERSION < (1, 8), "Insufficient pytorch version")
    def test_script_to(self):
        class f(torch.nn.Module):
            def forward(self, x: Instances):
                return x.to(torch.device("cpu"))

        image_shape = (15, 15)
        fields = {"proposal_boxes": Boxes, "a": Tensor}
        with patch_instances(fields) as new_instance:
            script_module = torch.jit.script(f())
            x = new_instance(image_shape)
            script_module(x)

            box_tensors = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]])
            x.proposal_boxes = Boxes(box_tensors)
            x.a = box_tensors
            script_module(x)

    @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version")
    def test_script_getitem(self):
        class f(torch.nn.Module):
            def forward(self, x: Instances, idx):
                return x[idx]

        image_shape = (15, 15)
        fields = {"proposal_boxes": Boxes, "a": Tensor}
        inst = Instances(image_shape)
        inst.proposal_boxes = Boxes(torch.rand(4, 4))
        inst.a = torch.rand(4, 10)
        idx = torch.tensor([True, False, True, False])
        with patch_instances(fields) as new_instance:
            script_module = torch.jit.script(f())

            out = f()(inst, idx)
            out_scripted = script_module(new_instance.from_instances(inst), idx)
            self.assertTrue(
                torch.equal(out.proposal_boxes.tensor, out_scripted.proposal_boxes.tensor)
            )
            self.assertTrue(torch.equal(out.a, out_scripted.a))

    @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version")
    def test_from_to_instances(self):
        orig = Instances((30, 30))
        orig.proposal_boxes = Boxes(torch.rand(3, 4))

        fields = {"proposal_boxes": Boxes, "a": Tensor}
        with patch_instances(fields) as NewInstances:
            # convert to NewInstances and back
            new1 = NewInstances.from_instances(orig)
            new2 = convert_scripted_instances(new1)
        self.assertTrue(torch.equal(orig.proposal_boxes.tensor, new1.proposal_boxes.tensor))
        self.assertTrue(torch.equal(orig.proposal_boxes.tensor, new2.proposal_boxes.tensor))


if __name__ == "__main__":
    unittest.main()