File size: 8,190 Bytes
1865436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright (c) Facebook, Inc. and its affiliates.
import itertools
import math
from collections import defaultdict
from typing import Optional
import torch
from torch.utils.data.sampler import Sampler

from detectron2.utils import comm


class TrainingSampler(Sampler):
    """
    In training, we only care about the "infinite stream" of training data.
    So this sampler produces an infinite stream of indices and
    all workers cooperate to correctly shuffle the indices and sample different indices.

    The samplers in each worker effectively produces `indices[worker_id::num_workers]`
    where `indices` is an infinite stream of indices consisting of
    `shuffle(range(size)) + shuffle(range(size)) + ...` (if shuffle is True)
    or `range(size) + range(size) + ...` (if shuffle is False)
    """

    def __init__(self, size: int, shuffle: bool = True, seed: Optional[int] = None):
        """
        Args:
            size (int): the total number of data of the underlying dataset to sample from
            shuffle (bool): whether to shuffle the indices or not
            seed (int): the initial seed of the shuffle. Must be the same
                across all workers. If None, will use a random seed shared
                among workers (require synchronization among all workers).
        """
        self._size = size
        assert size > 0
        self._shuffle = shuffle
        if seed is None:
            seed = comm.shared_random_seed()
        self._seed = int(seed)

        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()

    def __iter__(self):
        start = self._rank
        yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)

    def _infinite_indices(self):
        g = torch.Generator()
        g.manual_seed(self._seed)
        while True:
            if self._shuffle:
                yield from torch.randperm(self._size, generator=g).tolist()
            else:
                yield from torch.arange(self._size).tolist()


class RepeatFactorTrainingSampler(Sampler):
    """
    Similar to TrainingSampler, but a sample may appear more times than others based
    on its "repeat factor". This is suitable for training on class imbalanced datasets like LVIS.
    """

    def __init__(self, repeat_factors, *, shuffle=True, seed=None):
        """
        Args:
            repeat_factors (Tensor): a float vector, the repeat factor for each indice. When it's
                full of ones, it is equivalent to ``TrainingSampler(len(repeat_factors), ...)``.
            shuffle (bool): whether to shuffle the indices or not
            seed (int): the initial seed of the shuffle. Must be the same
                across all workers. If None, will use a random seed shared
                among workers (require synchronization among all workers).
        """
        self._shuffle = shuffle
        if seed is None:
            seed = comm.shared_random_seed()
        self._seed = int(seed)

        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()

        # Split into whole number (_int_part) and fractional (_frac_part) parts.
        self._int_part = torch.trunc(repeat_factors)
        self._frac_part = repeat_factors - self._int_part

    @staticmethod
    def repeat_factors_from_category_frequency(dataset_dicts, repeat_thresh):
        """
        Compute (fractional) per-image repeat factors based on category frequency.
        The repeat factor for an image is a function of the frequency of the rarest
        category labeled in that image. The "frequency of category c" in [0, 1] is defined
        as the fraction of images in the training set (without repeats) in which category c
        appears.
        See :paper:`lvis` (>= v2) Appendix B.2.

        Args:
            dataset_dicts (list[dict]): annotations in Detectron2 dataset format.
            repeat_thresh (float): frequency threshold below which data is repeated.
                If the frequency is half of `repeat_thresh`, the image will be
                repeated twice.

        Returns:
            torch.Tensor:
                the i-th element is the repeat factor for the dataset image at index i.
        """
        # 1. For each category c, compute the fraction of images that contain it: f(c)
        category_freq = defaultdict(int)
        for dataset_dict in dataset_dicts:  # For each image (without repeats)
            cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
            for cat_id in cat_ids:
                category_freq[cat_id] += 1
        num_images = len(dataset_dicts)
        for k, v in category_freq.items():
            category_freq[k] = v / num_images

        # 2. For each category c, compute the category-level repeat factor:
        #    r(c) = max(1, sqrt(t / f(c)))
        category_rep = {
            cat_id: max(1.0, math.sqrt(repeat_thresh / cat_freq))
            for cat_id, cat_freq in category_freq.items()
        }

        # 3. For each image I, compute the image-level repeat factor:
        #    r(I) = max_{c in I} r(c)
        rep_factors = []
        for dataset_dict in dataset_dicts:
            cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
            rep_factor = max({category_rep[cat_id] for cat_id in cat_ids}, default=1.0)
            rep_factors.append(rep_factor)

        return torch.tensor(rep_factors, dtype=torch.float32)

    def _get_epoch_indices(self, generator):
        """
        Create a list of dataset indices (with repeats) to use for one epoch.

        Args:
            generator (torch.Generator): pseudo random number generator used for
                stochastic rounding.

        Returns:
            torch.Tensor: list of dataset indices to use in one epoch. Each index
                is repeated based on its calculated repeat factor.
        """
        # Since repeat factors are fractional, we use stochastic rounding so
        # that the target repeat factor is achieved in expectation over the
        # course of training
        rands = torch.rand(len(self._frac_part), generator=generator)
        rep_factors = self._int_part + (rands < self._frac_part).float()
        # Construct a list of indices in which we repeat images as specified
        indices = []
        for dataset_index, rep_factor in enumerate(rep_factors):
            indices.extend([dataset_index] * int(rep_factor.item()))
        return torch.tensor(indices, dtype=torch.int64)

    def __iter__(self):
        start = self._rank
        yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)

    def _infinite_indices(self):
        g = torch.Generator()
        g.manual_seed(self._seed)
        while True:
            # Sample indices with repeats determined by stochastic rounding; each
            # "epoch" may have a slightly different size due to the rounding.
            indices = self._get_epoch_indices(g)
            if self._shuffle:
                randperm = torch.randperm(len(indices), generator=g)
                yield from indices[randperm].tolist()
            else:
                yield from indices.tolist()


class InferenceSampler(Sampler):
    """
    Produce indices for inference across all workers.
    Inference needs to run on the __exact__ set of samples,
    therefore when the total number of samples is not divisible by the number of workers,
    this sampler produces different number of samples on different workers.
    """

    def __init__(self, size: int):
        """
        Args:
            size (int): the total number of data of the underlying dataset to sample from
        """
        self._size = size
        assert size > 0
        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()

        shard_size = (self._size - 1) // self._world_size + 1
        begin = shard_size * self._rank
        end = min(shard_size * (self._rank + 1), self._size)
        self._local_indices = range(begin, end)

    def __iter__(self):
        yield from self._local_indices

    def __len__(self):
        return len(self._local_indices)