Spaces:
Build error
Build error
File size: 18,243 Bytes
1865436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
# Copyright (c) Facebook, Inc. and its affiliates.
import itertools
import logging
import numpy as np
import operator
import pickle
import torch.utils.data
from tabulate import tabulate
from termcolor import colored
from detectron2.config import configurable
from detectron2.structures import BoxMode
from detectron2.utils.comm import get_world_size
from detectron2.utils.env import seed_all_rng
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import _log_api_usage, log_first_n
from .catalog import DatasetCatalog, MetadataCatalog
from .common import AspectRatioGroupedDataset, DatasetFromList, MapDataset
from .dataset_mapper import DatasetMapper
from .detection_utils import check_metadata_consistency
from .samplers import InferenceSampler, RepeatFactorTrainingSampler, TrainingSampler
"""
This file contains the default logic to build a dataloader for training or testing.
"""
__all__ = [
"build_batch_data_loader",
"build_detection_train_loader",
"build_detection_test_loader",
"get_detection_dataset_dicts",
"load_proposals_into_dataset",
"print_instances_class_histogram",
]
def filter_images_with_only_crowd_annotations(dataset_dicts):
"""
Filter out images with none annotations or only crowd annotations
(i.e., images without non-crowd annotations).
A common training-time preprocessing on COCO dataset.
Args:
dataset_dicts (list[dict]): annotations in Detectron2 Dataset format.
Returns:
list[dict]: the same format, but filtered.
"""
num_before = len(dataset_dicts)
def valid(anns):
for ann in anns:
if ann.get("iscrowd", 0) == 0:
return True
return False
dataset_dicts = [x for x in dataset_dicts if valid(x["annotations"])]
num_after = len(dataset_dicts)
logger = logging.getLogger(__name__)
logger.info(
"Removed {} images with no usable annotations. {} images left.".format(
num_before - num_after, num_after
)
)
return dataset_dicts
def filter_images_with_few_keypoints(dataset_dicts, min_keypoints_per_image):
"""
Filter out images with too few number of keypoints.
Args:
dataset_dicts (list[dict]): annotations in Detectron2 Dataset format.
Returns:
list[dict]: the same format as dataset_dicts, but filtered.
"""
num_before = len(dataset_dicts)
def visible_keypoints_in_image(dic):
# Each keypoints field has the format [x1, y1, v1, ...], where v is visibility
annotations = dic["annotations"]
return sum(
(np.array(ann["keypoints"][2::3]) > 0).sum()
for ann in annotations
if "keypoints" in ann
)
dataset_dicts = [
x for x in dataset_dicts if visible_keypoints_in_image(x) >= min_keypoints_per_image
]
num_after = len(dataset_dicts)
logger = logging.getLogger(__name__)
logger.info(
"Removed {} images with fewer than {} keypoints.".format(
num_before - num_after, min_keypoints_per_image
)
)
return dataset_dicts
def load_proposals_into_dataset(dataset_dicts, proposal_file):
"""
Load precomputed object proposals into the dataset.
The proposal file should be a pickled dict with the following keys:
- "ids": list[int] or list[str], the image ids
- "boxes": list[np.ndarray], each is an Nx4 array of boxes corresponding to the image id
- "objectness_logits": list[np.ndarray], each is an N sized array of objectness scores
corresponding to the boxes.
- "bbox_mode": the BoxMode of the boxes array. Defaults to ``BoxMode.XYXY_ABS``.
Args:
dataset_dicts (list[dict]): annotations in Detectron2 Dataset format.
proposal_file (str): file path of pre-computed proposals, in pkl format.
Returns:
list[dict]: the same format as dataset_dicts, but added proposal field.
"""
logger = logging.getLogger(__name__)
logger.info("Loading proposals from: {}".format(proposal_file))
with PathManager.open(proposal_file, "rb") as f:
proposals = pickle.load(f, encoding="latin1")
# Rename the key names in D1 proposal files
rename_keys = {"indexes": "ids", "scores": "objectness_logits"}
for key in rename_keys:
if key in proposals:
proposals[rename_keys[key]] = proposals.pop(key)
# Fetch the indexes of all proposals that are in the dataset
# Convert image_id to str since they could be int.
img_ids = set({str(record["image_id"]) for record in dataset_dicts})
id_to_index = {str(id): i for i, id in enumerate(proposals["ids"]) if str(id) in img_ids}
# Assuming default bbox_mode of precomputed proposals are 'XYXY_ABS'
bbox_mode = BoxMode(proposals["bbox_mode"]) if "bbox_mode" in proposals else BoxMode.XYXY_ABS
for record in dataset_dicts:
# Get the index of the proposal
i = id_to_index[str(record["image_id"])]
boxes = proposals["boxes"][i]
objectness_logits = proposals["objectness_logits"][i]
# Sort the proposals in descending order of the scores
inds = objectness_logits.argsort()[::-1]
record["proposal_boxes"] = boxes[inds]
record["proposal_objectness_logits"] = objectness_logits[inds]
record["proposal_bbox_mode"] = bbox_mode
return dataset_dicts
def print_instances_class_histogram(dataset_dicts, class_names):
"""
Args:
dataset_dicts (list[dict]): list of dataset dicts.
class_names (list[str]): list of class names (zero-indexed).
"""
num_classes = len(class_names)
hist_bins = np.arange(num_classes + 1)
histogram = np.zeros((num_classes,), dtype=np.int)
for entry in dataset_dicts:
annos = entry["annotations"]
classes = np.asarray(
[x["category_id"] for x in annos if not x.get("iscrowd", 0)], dtype=np.int
)
if len(classes):
assert classes.min() >= 0, f"Got an invalid category_id={classes.min()}"
assert (
classes.max() < num_classes
), f"Got an invalid category_id={classes.max()} for a dataset of {num_classes} classes"
histogram += np.histogram(classes, bins=hist_bins)[0]
N_COLS = min(6, len(class_names) * 2)
def short_name(x):
# make long class names shorter. useful for lvis
if len(x) > 13:
return x[:11] + ".."
return x
data = list(
itertools.chain(*[[short_name(class_names[i]), int(v)] for i, v in enumerate(histogram)])
)
total_num_instances = sum(data[1::2])
data.extend([None] * (N_COLS - (len(data) % N_COLS)))
if num_classes > 1:
data.extend(["total", total_num_instances])
data = itertools.zip_longest(*[data[i::N_COLS] for i in range(N_COLS)])
table = tabulate(
data,
headers=["category", "#instances"] * (N_COLS // 2),
tablefmt="pipe",
numalign="left",
stralign="center",
)
log_first_n(
logging.INFO,
"Distribution of instances among all {} categories:\n".format(num_classes)
+ colored(table, "cyan"),
key="message",
)
def get_detection_dataset_dicts(names, filter_empty=True, min_keypoints=0, proposal_files=None):
"""
Load and prepare dataset dicts for instance detection/segmentation and semantic segmentation.
Args:
names (str or list[str]): a dataset name or a list of dataset names
filter_empty (bool): whether to filter out images without instance annotations
min_keypoints (int): filter out images with fewer keypoints than
`min_keypoints`. Set to 0 to do nothing.
proposal_files (list[str]): if given, a list of object proposal files
that match each dataset in `names`.
Returns:
list[dict]: a list of dicts following the standard dataset dict format.
"""
if isinstance(names, str):
names = [names]
assert len(names), names
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in names]
for dataset_name, dicts in zip(names, dataset_dicts):
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
if proposal_files is not None:
assert len(names) == len(proposal_files)
# load precomputed proposals from proposal files
dataset_dicts = [
load_proposals_into_dataset(dataset_i_dicts, proposal_file)
for dataset_i_dicts, proposal_file in zip(dataset_dicts, proposal_files)
]
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts))
has_instances = "annotations" in dataset_dicts[0]
if filter_empty and has_instances:
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts)
if min_keypoints > 0 and has_instances:
dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints)
if has_instances:
try:
class_names = MetadataCatalog.get(names[0]).thing_classes
check_metadata_consistency("thing_classes", names)
print_instances_class_histogram(dataset_dicts, class_names)
except AttributeError: # class names are not available for this dataset
pass
assert len(dataset_dicts), "No valid data found in {}.".format(",".join(names))
return dataset_dicts
def build_batch_data_loader(
dataset, sampler, total_batch_size, *, aspect_ratio_grouping=False, num_workers=0
):
"""
Build a batched dataloader for training.
Args:
dataset (torch.utils.data.Dataset): map-style PyTorch dataset. Can be indexed.
sampler (torch.utils.data.sampler.Sampler): a sampler that produces indices
total_batch_size, aspect_ratio_grouping, num_workers): see
:func:`build_detection_train_loader`.
Returns:
iterable[list]. Length of each list is the batch size of the current
GPU. Each element in the list comes from the dataset.
"""
world_size = get_world_size()
assert (
total_batch_size > 0 and total_batch_size % world_size == 0
), "Total batch size ({}) must be divisible by the number of gpus ({}).".format(
total_batch_size, world_size
)
batch_size = total_batch_size // world_size
if aspect_ratio_grouping:
data_loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
num_workers=num_workers,
batch_sampler=None,
collate_fn=operator.itemgetter(0), # don't batch, but yield individual elements
worker_init_fn=worker_init_reset_seed,
) # yield individual mapped dict
return AspectRatioGroupedDataset(data_loader, batch_size)
else:
batch_sampler = torch.utils.data.sampler.BatchSampler(
sampler, batch_size, drop_last=True
) # drop_last so the batch always have the same size
return torch.utils.data.DataLoader(
dataset,
num_workers=num_workers,
batch_sampler=batch_sampler,
collate_fn=trivial_batch_collator,
worker_init_fn=worker_init_reset_seed,
)
def _train_loader_from_config(cfg, mapper=None, *, dataset=None, sampler=None):
if dataset is None:
dataset = get_detection_dataset_dicts(
cfg.DATASETS.TRAIN,
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
if cfg.MODEL.KEYPOINT_ON
else 0,
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
)
_log_api_usage("dataset." + cfg.DATASETS.TRAIN[0])
if mapper is None:
mapper = DatasetMapper(cfg, True)
if sampler is None:
sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
logger = logging.getLogger(__name__)
logger.info("Using training sampler {}".format(sampler_name))
if sampler_name == "TrainingSampler":
sampler = TrainingSampler(len(dataset))
elif sampler_name == "RepeatFactorTrainingSampler":
repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
dataset, cfg.DATALOADER.REPEAT_THRESHOLD
)
sampler = RepeatFactorTrainingSampler(repeat_factors)
else:
raise ValueError("Unknown training sampler: {}".format(sampler_name))
return {
"dataset": dataset,
"sampler": sampler,
"mapper": mapper,
"total_batch_size": cfg.SOLVER.IMS_PER_BATCH,
"aspect_ratio_grouping": cfg.DATALOADER.ASPECT_RATIO_GROUPING,
"num_workers": cfg.DATALOADER.NUM_WORKERS,
}
# TODO can allow dataset as an iterable or IterableDataset to make this function more general
@configurable(from_config=_train_loader_from_config)
def build_detection_train_loader(
dataset, *, mapper, sampler=None, total_batch_size, aspect_ratio_grouping=True, num_workers=0
):
"""
Build a dataloader for object detection with some default features.
This interface is experimental.
Args:
dataset (list or torch.utils.data.Dataset): a list of dataset dicts,
or a map-style pytorch dataset. They can be obtained by using
:func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`.
mapper (callable): a callable which takes a sample (dict) from dataset and
returns the format to be consumed by the model.
When using cfg, the default choice is ``DatasetMapper(cfg, is_train=True)``.
sampler (torch.utils.data.sampler.Sampler or None): a sampler that produces
indices to be applied on ``dataset``. Default to :class:`TrainingSampler`,
which coordinates an infinite random shuffle sequence across all workers.
total_batch_size (int): total batch size across all workers. Batching
simply puts data into a list.
aspect_ratio_grouping (bool): whether to group images with similar
aspect ratio for efficiency. When enabled, it requires each
element in dataset be a dict with keys "width" and "height".
num_workers (int): number of parallel data loading workers
Returns:
torch.utils.data.DataLoader:
a dataloader. Each output from it is a ``list[mapped_element]`` of length
``total_batch_size / num_workers``, where ``mapped_element`` is produced
by the ``mapper``.
"""
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
dataset = MapDataset(dataset, mapper)
if sampler is None:
sampler = TrainingSampler(len(dataset))
assert isinstance(sampler, torch.utils.data.sampler.Sampler)
return build_batch_data_loader(
dataset,
sampler,
total_batch_size,
aspect_ratio_grouping=aspect_ratio_grouping,
num_workers=num_workers,
)
def _test_loader_from_config(cfg, dataset_name, mapper=None):
"""
Uses the given `dataset_name` argument (instead of the names in cfg), because the
standard practice is to evaluate each test set individually (not combining them).
"""
dataset = get_detection_dataset_dicts(
[dataset_name],
filter_empty=False,
proposal_files=[
cfg.DATASETS.PROPOSAL_FILES_TEST[list(cfg.DATASETS.TEST).index(dataset_name)]
]
if cfg.MODEL.LOAD_PROPOSALS
else None,
)
if mapper is None:
mapper = DatasetMapper(cfg, False)
return {"dataset": dataset, "mapper": mapper, "num_workers": cfg.DATALOADER.NUM_WORKERS}
@configurable(from_config=_test_loader_from_config)
def build_detection_test_loader(dataset, *, mapper, sampler=None, num_workers=0):
"""
Similar to `build_detection_train_loader`, but uses a batch size of 1,
and :class:`InferenceSampler`. This sampler coordinates all workers to
produce the exact set of all samples.
This interface is experimental.
Args:
dataset (list or torch.utils.data.Dataset): a list of dataset dicts,
or a map-style pytorch dataset. They can be obtained by using
:func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`.
mapper (callable): a callable which takes a sample (dict) from dataset
and returns the format to be consumed by the model.
When using cfg, the default choice is ``DatasetMapper(cfg, is_train=False)``.
sampler (torch.utils.data.sampler.Sampler or None): a sampler that produces
indices to be applied on ``dataset``. Default to :class:`InferenceSampler`,
which splits the dataset across all workers.
num_workers (int): number of parallel data loading workers
Returns:
DataLoader: a torch DataLoader, that loads the given detection
dataset, with test-time transformation and batching.
Examples:
::
data_loader = build_detection_test_loader(
DatasetRegistry.get("my_test"),
mapper=DatasetMapper(...))
# or, instantiate with a CfgNode:
data_loader = build_detection_test_loader(cfg, "my_test")
"""
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
dataset = MapDataset(dataset, mapper)
if sampler is None:
sampler = InferenceSampler(len(dataset))
# Always use 1 image per worker during inference since this is the
# standard when reporting inference time in papers.
batch_sampler = torch.utils.data.sampler.BatchSampler(sampler, 1, drop_last=False)
data_loader = torch.utils.data.DataLoader(
dataset,
num_workers=num_workers,
batch_sampler=batch_sampler,
collate_fn=trivial_batch_collator,
)
return data_loader
def trivial_batch_collator(batch):
"""
A batch collator that does nothing.
"""
return batch
def worker_init_reset_seed(worker_id):
initial_seed = torch.initial_seed() % 2 ** 31
seed_all_rng(initial_seed + worker_id)
|