File size: 2,094 Bytes
ce77544
e5ad44c
 
 
 
 
 
 
 
 
ce77544
95c7396
f965943
95c7396
 
 
 
 
 
 
 
7e44fbb
 
 
 
 
 
 
 
 
 
 
 
95c7396
7e44fbb
 
 
 
 
 
 
 
 
 
705c6d7
ce77544
 
 
 
705c6d7
 
884d850
461c516
6599687
ce77544
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import os

top_secret_key = os.getenv("top_secret")

from predibase import Predibase

# Pass api_token directly, or get it from the environment variable.
pb = Predibase(api_token=top_secret_key)
client = pb.deployments.client("gemma-2-9b")

def process_text(text,temperature):
    print("temparetaure is ", temperature)
    text_input = text
    control_prompt = f"""You are an advanced translation model specializing in translating texts from the Ottoman language (old Turkish) to English. Your task is to produce accurate, fluent, and contextually appropriate translations. Maintain the original meaning, tone, and style of the text as much as possible. For religious or culturally significant phrases, try to preserve their essence and convey the intended respect and significance.
    
    ### Ottoman text:
    {text_input}
    
    ### English text:
    """

    for i in range(2):
        try:
            # Assuming `client` is your pre-defined translation model client
            result = client.generate(
                control_prompt,
                adapter_id="gemma-2-9b/1",
                max_new_tokens=256,
                temperature=0.7,
                top_p=0.95,
                top_k=50
            ).generated_text
    
            print("r:", result)

            result = result.split("###")[0]
            
            # Stripping any leading/trailing whitespace
            result = result.strip()
            
            return f"{result}"
        except Exception as e:
            return "Maalesef şuanda sunucu meşgul, lütfen biraz sonra bir daha deneyin!"


# Create the Gradio interface
iface = gr.Interface(
    fn=process_text,  # Function to process input
    inputs=[
        gr.Textbox(label="Lütfen çevirilecek Türkçe metni girin"),  # Type of input widget,
        gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label="Sıcaklık(Modelin davranışını değiştirir, ya 0.7 ya 1 genelde iyi)")
    ],
    outputs=gr.Textbox(label="İngilizce çeviri"),  # Type of output widget,
)

# Launch the app
iface.launch()