File size: 40,012 Bytes
953a835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
import numpy as np
from tqdm import tqdm
import pandas as pd
import os, sqlite3, traceback, ast, requests, fasttext, re, time, string, spacy, pysbd
from requests.exceptions import ReadTimeout, TooManyRedirects, ConnectionError, ConnectTimeout, InvalidSchema, InvalidURL
from qwikidata.linked_data_interface import get_entity_dict_from_api
from datetime import datetime
import utils.wikidata_utils as wdutils
from importlib import reload  
from urllib.parse import urlparse, unquote
from urllib import parse
from bs4 import BeautifulSoup
from IPython.display import clear_output
from os.path import exists
from pathlib import Path
from nltk.tokenize import sent_tokenize
from sentence_splitter import SentenceSplitter, split_text_into_sentences
import nltk
nltk.download('punkt')

class DatabaseExtractor():
    def __init__(self, dbname='wikidata_claims_refs_parsed.db'):
        self.dbname = dbname
        self.prepare_extraction()
        
    def finish_extraction(self):
        self.db.commit()
        
    def prepare_extraction(self):
        self.db = sqlite3.connect(self.dbname)
        self.cursor = self.db.cursor()

        self.cursor.execute('''
            CREATE TABLE IF NOT EXISTS claims(
                entity_id TEXT,
                claim_id TEXT,
                rank TEXT,
                property_id TEXT,
                datatype TEXT,
                datavalue TEXT,
                PRIMARY KEY (
                    claim_id
                )
        )''')

        self.cursor.execute('''
            CREATE TABLE IF NOT EXISTS claims_refs(
                claim_id TEXT,
                reference_id TEXT,
                PRIMARY KEY (
                    claim_id,
                    reference_id
                )
        )''')

        self.cursor.execute('''
            CREATE TABLE IF NOT EXISTS refs(
                reference_id TEXT,
                reference_property_id TEXT,
                reference_index TEXT,
                reference_datatype TEXT,
                reference_value TEXT,
                PRIMARY KEY (
                    reference_id,
                    reference_property_id,
                    reference_index
                )
        )''')
        self.db.commit()  
        
    def extract_claim(self, entity_id, claim):
        if claim['mainsnak']['snaktype'] == 'value':
            value = str(claim['mainsnak']['datavalue'])
        else:
            value = claim['mainsnak']['snaktype']
        try:
            self.cursor.execute('''
            INSERT INTO claims(entity_id, claim_id, rank, property_id, datatype, datavalue)
            VALUES($var,$var,$var,$var,$var,$var)'''.replace('$var','?'), (
                entity_id,claim['id'],claim['rank'],
                claim['mainsnak']['property'],claim['mainsnak']['datatype'],value
            ))
        except UnicodeEncodeError:
            print(entity_id,claim['id'],claim['rank'],
                claim['mainsnak']['property'],claim['mainsnak']['datatype'],value)
            raise
        except sqlite3.IntegrityError as err:
            #self.db.rollback()
            self.cursor.execute(
                '''SELECT *
                FROM claims 
                WHERE claim_id=$var
                '''.replace('$var','?'), (claim['id'],)
            )
            conflicted_value = self.cursor.fetchone()
            if conflicted_value == (entity_id,claim['id'],claim['rank'],
                    claim['mainsnak']['property'],claim['mainsnak']['datatype'],value):
                pass
            else:
                print(err, claim['id'])
                traceback.print_exc()
                raise err
        finally:
            #self.db.commit()
            pass

    def extract_reference(self, ref):
        for snaks in ref['snaks'].values():
            for i, snak in enumerate(snaks):
                if snak['snaktype'] == 'value':
                    value = str(snak['datavalue'])
                else:
                    value = snak['snaktype']
                try:
                    self.cursor.execute('''
                    INSERT INTO refs(reference_id, reference_property_id, reference_index,
                    reference_datatype, reference_value)
                    VALUES($var,$var,$var,$var,$var)'''.replace('$var','?'), (
                        ref['hash'],snak['property'],str(i),snak['datatype'],value
                    ))
                except sqlite3.IntegrityError as err:
                    #self.db.rollback()
                    self.cursor.execute(# WE DONT USE THE INDEX HERE, THEY TEND TO COME SHUFFLED FROM API AND SORTING TAKES TOO LONG
                        '''SELECT reference_id, reference_property_id, reference_datatype, reference_value
                        FROM refs 
                        WHERE reference_id = $var
                        AND reference_property_id = $var
                        '''.replace('$var','?'), (ref['hash'],snak['property'])
                    )
                    conflicted_values = self.cursor.fetchall()
                    if  (ref['hash'],snak['property'],snak['datatype'],value) in conflicted_values:
                        pass
                    else:
                        print(err, ref['hash'],snak['property'],i)
                        print('trying to insert:',(ref['hash'],snak['property'],str(i),snak['datatype'],value))
                        traceback.print_exc()
                        raise err
                finally:
                    #self.db.commit()
                    pass
            
    def extract_claim_reference(self, claim, ref):
        claim['id'],ref['hash']
        try:
            self.cursor.execute('''
            INSERT INTO claims_refs(claim_id, reference_id)
            VALUES($var,$var)'''.replace('$var','?'), (
                claim['id'],ref['hash']
            ))
        except sqlite3.IntegrityError as err:
            #db.rollback()
            pass
        finally:
            #self.db.commit()
            pass
    
    def extract_entity(self, e):
        for outgoing_property_id in e['claims'].values():
            for claim in outgoing_property_id:
                self.extract_claim(e['id'],claim)
                if 'references' in claim:
                    for ref in claim['references']: 
                        self.extract_claim_reference(claim, ref)
                        self.extract_reference(ref)

def claimParser(QID):
    entity_id = QID
    print('Setting up database ...')
    extractor = DatabaseExtractor()

    print('Fetching entity from API ...')
    entity = get_entity_dict_from_api(entity_id)

    if entity:
        print(f'Parsing entity: {entity_id}')
        extractor.extract_entity(entity)
    else:
        print(f'Failed to fetch entity: {entity_id}')

    extractor.finish_extraction()

def propertyFiltering(QID):
    reload(wdutils)
    DB_PATH = 'wikidata_claims_refs_parsed.db'
    claims_columns = ['entity_id','claim_id','rank','property_id','datatype','datavalue']

    properties_to_remove = {
        'general':[
            'P31', # - instance of
            'P279',# - subclass of
            'P373',# - commons category
            'P910',# - Topic's main category
            'P7561',# - category for the interior of the item
            'P5008',# - on focus list of Wikimedia project
            'P2670',# -  has parts of the class
            'P1740',# -  category for films shot at this location
            'P1612',# -  Commons Institution page
            'P8989',# -  category for the view of the item
            'P2959',# -  permanent duplicated item
            'P7867',# -  category for maps
            'P935' ,# -  Commons gallery
            'P1472',#  -  Commons Creator page
            'P8596',# category for the exterior of the item
            'P5105',# Deutsche Bahn station category
            'P8933',# category for the view from the item
            'P642',# of
            'P3876',# category for alumni of educational institution
            'P1791',# category of people buried here
            'P7084',# related category
            'P1465',# category for people who died here
            'P1687',# Wikidata property
            'P6104',# maintained by WikiProject
            'P4195',# category for employees of the organization
            'P1792',# category of associated people
            'P5869',# model item
            'P1659',# see also
            'P1464',# category for people born here
            'P2354',# has list
            'P1424',# topic's main template
            'P7782',# category for ship name
            'P179',# part of the series
            'P7888',# merged into
            'P6365',# member category
            'P8464',# content partnership category
            'P360',# is a list of
            'P805',# statement is subject of
            'P8703',# entry in abbreviations table
            'P1456',# list of monuments
            'P1012',# including
            'P1151',# topic's main Wikimedia portal
            'P2490',# page at OSTIS Belarus Wiki
            'P593',# HomoloGene ID
            'P8744',# economy of topic
            'P2614',# World Heritage criteria
            'P2184',# history of topic
            'P9241',# demographics of topic
            'P487',#Unicode character
            'P1754',#category related to list
            'P2559',#Wikidata usage instructions
            'P2517',#category for recipients of this award
            'P971',#category combines topics
            'P6112',# category for members of a team
            'P4224',#category contains
            'P301',#category's main topic
            'P1753',#list related to category
            'P1423',#template has topic
            'P1204',#Wikimedia portal's main topic
            'P3921',#Wikidata SPARQL query equivalent
            'P1963',#properties for this type
            'P5125',#Wikimedia outline
            'P3176',#uses property
            'P8952',#inappropriate property for this type
            'P2306',#property
            'P5193',#Wikidata property example for forms
            'P5977',#Wikidata property example for senses
        ],
        'specific': {}
    }

    db = sqlite3.connect(DB_PATH)
    cursor = db.cursor()
    # To see how many out of the total number of stored claims we are excluding by removing the general properties
    sql_query = "select count(*) from claims where property_id in $1;"
    sql_query = sql_query.replace('$1', '(' + ','.join([('"' + e + '"') for e in properties_to_remove['general']]) + ')')
    cursor.execute(sql_query)
    print('Removing the',len(properties_to_remove['general']),'properties deemed as ontological or unverbalisable')
    cursor = db.cursor()

    sql_query = "select * from claims where entity_id in $1;"
    sql_query = sql_query.replace('$1', '(' + ','.join([('"' + e + '"') for e in [QID]]) + ')')

    cursor.execute(sql_query)
    theme_df = pd.DataFrame(cursor.fetchall())
    theme_df.columns = claims_columns

    original_theme_df_size = theme_df.shape[0]
    last_stage_theme_df_size = original_theme_df_size

    print('-    Removing deprecated')

    # Remove deprecated
    theme_df = theme_df[theme_df['rank'] != 'deprecated'].reset_index(drop=True)
    print(
        '    -    Percentage of deprecated:',
        round((last_stage_theme_df_size-theme_df.shape[0])/original_theme_df_size*100, 2), '%'
    )
    last_stage_theme_df_size = theme_df.shape[0]

    print('-    Removing bad datatypes')

    # Remove external_ids, commonsMedia (e.g. photos), globe-coordinates, urls
    bad_datatypes = ['commonsMedia','external-id','globe-coordinate','url', 'wikibase-form',
                        'geo-shape', 'math', 'musical-notation', 'tabular-data', 'wikibase-sense']
    theme_df = theme_df[
        theme_df['datatype'].apply(
            lambda x : x not in bad_datatypes
        )
    ].reset_index(drop=True)
    print(
        '    -    Percentage of bad datatypes:',
        round((last_stage_theme_df_size-theme_df.shape[0])/original_theme_df_size*100, 2), '%'
    )
    last_stage_theme_df_size = theme_df.shape[0]

    print('-    Removing bad properties')

    # Remove specific properties such as P31 and P279
    theme_df = theme_df[
        theme_df['property_id'].apply(
            lambda x : (x not in properties_to_remove['general']))
        
    ].reset_index(drop=True)
    print(
        '    -    Percentage of ontology (non-domain) properties:',
        round((last_stage_theme_df_size-theme_df.shape[0])/original_theme_df_size*100, 2), '%'
    )
    last_stage_theme_df_size = theme_df.shape[0]

    print('-    Removing somevalue/novalue')

    # Remove novalue and somevalue
    theme_df = theme_df[
        theme_df['datavalue'].apply(
            lambda x : x not in ['somevalue', 'novalue']
        )
    ].reset_index(drop=True)
    print(
        '    -    Percentage of somevalue/novalue:',
        round((last_stage_theme_df_size-theme_df.shape[0])/original_theme_df_size*100, 2), '%'
    )
    last_stage_theme_df_size = theme_df.shape[0]

    print(
        'After all removals, we keep',
        round(last_stage_theme_df_size/original_theme_df_size*100, 2),
    )
    theme_df.to_sql('claims', db, if_exists='replace', index=False)

    return theme_df

def get_object_label_given_datatype(row):
    Wd_API = wdutils.CachedWikidataAPI()
    Wd_API.languages = ['en']
    def turn_to_century_or_millennium(y, mode):
        y = str(y)
        if mode == 'C':
            div = 100
            group = int(y.rjust(3, '0')[:-2])
            mode_name = 'century'
        elif mode == 'M':
            div = 1000
            group = int(y.rjust(4, '0')[:-3])
            mode_name = 'millenium'
        else:        
            raise ValueError('Use mode = C for century and M for millennium')
            
        if int(y)%div != 0:
            group += 1
        group = str(group)

        group_suffix = (
            'st' if group[-1] == '1' else (
                'nd' if group[-1] == '2' else (
                    'rd' if group[-1] == '3' else 'th'
                )
            )
        )

        return ' '.join([group+group_suffix, mode_name])

    dt = row['datatype']
    dv = row['datavalue']
    
    dt_types = ['wikibase-item', 'monolingualtext', 'quantity', 'time', 'string']
    if dt not in dt_types:
        print(dt)
        raise ValueError
    else:
        try:
            if dt == dt_types[0]:
                return Wd_API.get_label(ast.literal_eval(dv)['value']['id'], True) #get label here
            elif dt == dt_types[1]:
                dv = ast.literal_eval(dv)
                return (dv['value']['text'], dv['value']['language'])
            elif dt == dt_types[2]:
                dv = ast.literal_eval(dv)
                amount, unit = dv['value']['amount'], dv['value']['unit']
                if amount[0] == '+':
                    amount = amount[1:]
                if str(unit) == '1':
                    return (str(amount), 'en')
                else:
                    unit_entity_id = unit.split('/')[-1]
                    unit = Wd_API.get_label(unit_entity_id, True)#get label here
                    return (' '.join([amount, unit[0]]), unit[1])
            elif dt == dt_types[3]:
                dv = ast.literal_eval(dv)
                time = dv['value']['time']
                timezone = dv['value']['timezone']
                precision = dv['value']['precision']
                assert dv['value']['after'] == 0 and dv['value']['before'] == 0

                sufix = 'BC' if time[0] == '-' else ''
                time = time[1:]

                if precision == 11: #date
                    return (datetime.strptime(time, '%Y-%m-%dT00:00:%SZ').strftime('%d/%m/%Y') + sufix, 'en')
                elif precision == 10: #month
                    try:
                        return (datetime.strptime(time, '%Y-%m-00T00:00:%SZ').strftime("%B of %Y") + sufix, 'en')
                    except ValueError:
                        return (datetime.strptime(time, '%Y-%m-%dT00:00:%SZ').strftime("%B of %Y") + sufix, 'en')
                elif precision == 9: #year
                    try:
                        return (datetime.strptime(time, '%Y-00-00T00:00:%SZ').strftime('%Y') + sufix, 'en')
                    except ValueError:
                        return (datetime.strptime(time, '%Y-%m-%dT00:00:%SZ').strftime('%Y') + sufix, 'en')
                elif precision == 8: #decade
                    try:
                        return (datetime.strptime(time, '%Y-00-00T00:00:%SZ').strftime('%Y')[:-1] +'0s' + sufix, 'en')
                    except ValueError:
                        return (datetime.strptime(time, '%Y-%m-%dT00:00:%SZ').strftime('%Y')[:-1] +'0s' + sufix, 'en')
                elif precision == 7: #century
                    try:
                        parsed_time = datetime.strptime(time, '%Y-00-00T00:00:%SZ')
                    except ValueError:
                        parsed_time = datetime.strptime(time, '%Y-%m-%dT00:00:%SZ')
                    finally:                        
                        return (turn_to_century_or_millennium(
                            parsed_time.strftime('%Y'), mode='C'
                        ) + sufix, 'en')
                elif precision == 6: #millennium
                    try:
                        parsed_time = datetime.strptime(time, '%Y-00-00T00:00:%SZ')
                    except ValueError:
                        parsed_time = datetime.strptime(time, '%Y-%m-%dT00:00:%SZ')
                    finally:                        
                        return (turn_to_century_or_millennium(
                            parsed_time.strftime('%Y'), mode='M'
                        ) + sufix, 'en')
                elif precision == 4: #hundred thousand years 
                    timeint = int(datetime.strptime(time, '%Y-00-00T00:00:%SZ').strftime('%Y'))
                    timeint = round(timeint/1e5,1)
                    return (str(timeint) + 'hundred thousand years' + sufix, 'en')
                elif precision == 3: #million years 
                    timeint = int(datetime.strptime(time, '%Y-00-00T00:00:%SZ').strftime('%Y'))
                    timeint = round(timeint/1e6,1)
                    return (str(timeint) + 'million years' + sufix, 'en')
                elif precision == 0: #billion years 
                    timeint = int(datetime.strptime(time, '%Y-00-00T00:00:%SZ').strftime('%Y'))
                    timeint = round(timeint/1e9,1)
                    return (str(timeint) + 'billion years' +sufix, 'en')
            elif dt == dt_types[4]:
                return (ast.literal_eval(dv)['value'], 'en')
        except ValueError as e:
            #pdb.set_trace()
            raise e
            
def get_object_desc_given_datatype(row):
    Wd_API = wdutils.CachedWikidataAPI()
    Wd_API.languages = ['en']
    dt = row['datatype']
    dv = row['datavalue']
    
    dt_types = ['wikibase-item', 'monolingualtext', 'quantity', 'time', 'string']
    if dt not in dt_types:
        print(dt)
        raise ValueError
    else:
        try:
            if dt == dt_types[0]:
                return Wd_API.get_desc(ast.literal_eval(dv)['value']['id']) #get label here
            elif dt == dt_types[1]:
                return ('no-desc', 'none')
            elif dt == dt_types[2]:
                dv = ast.literal_eval(dv)
                amount, unit = dv['value']['amount'], dv['value']['unit']
                if amount[0] == '+':
                    amount = amount[1:]
                if str(unit) == '1':
                    return ('no-desc', 'none')
                else:
                    unit_entity_id = unit.split('/')[-1]
                    return Wd_API.get_desc(unit_entity_id)
            elif dt == dt_types[3]:
                return ('no-desc', 'none')
            elif dt == dt_types[4]:
                return ('no-desc', 'none')
        except ValueError as e:
            #pdb.set_trace()
            raise e
            
def get_object_alias_given_datatype(row):
    Wd_API = wdutils.CachedWikidataAPI()
    Wd_API.languages = ['en']
    dt = row['datatype']
    dv = row['datavalue']
    
    dt_types = ['wikibase-item', 'monolingualtext', 'quantity', 'time', 'string']
    if dt not in dt_types:
        print(dt)
        raise ValueError
    else:
        try:
            if dt == dt_types[0]:
                return Wd_API.get_alias(ast.literal_eval(dv)['value']['id']) #get label here
            elif dt == dt_types[1]:
                return ('no-alias', 'none')
            elif dt == dt_types[2]:
                dv = ast.literal_eval(dv)
                amount, unit = dv['value']['amount'], dv['value']['unit']
                if amount[0] == '+':
                    amount = amount[1:]
                if str(unit) == '1':
                    return ('no-alias', 'none')
                else:
                    unit_entity_id = unit.split('/')[-1]
                    return Wd_API.get_alias(unit_entity_id)
            elif dt == dt_types[3]:
                dv = ast.literal_eval(dv)
                time = dv['value']['time']
                timezone = dv['value']['timezone']
                precision = dv['value']['precision']
                assert dv['value']['after'] == 0 and dv['value']['before'] == 0

                sufix = 'BC' if time[0] == '-' else ''
                time = time[1:]

                if precision == 11: #date
                    return ([
                        datetime.strptime(time, '%Y-%m-%dT00:00:%SZ').strftime('%-d of %B, %Y') + sufix,
                        datetime.strptime(time, '%Y-%m-%dT00:00:%SZ').strftime('%d/%m/%Y (dd/mm/yyyy)') + sufix,
                        datetime.strptime(time, '%Y-%m-%dT00:00:%SZ').strftime('%b %-d, %Y') + sufix
                    ], 'en')
                else: #month
                    return ('no-alias', 'none')
            elif dt == dt_types[4]:
                return ('no-alias', 'none')
        except ValueError as e:
            #pdb.set_trace()
            raise e

def textualAugmentation(filtered_df):

    Wd_API = wdutils.CachedWikidataAPI()
    Wd_API.languages = ['en']

    filtered_df['entity_label'] = filtered_df['entity_id'].apply(lambda x: Wd_API.get_label(x, True))
    filtered_df['entity_desc'] = filtered_df['entity_id'].apply(lambda x: Wd_API.get_desc(x))
    filtered_df['entity_alias'] = filtered_df['entity_id'].apply(lambda x: Wd_API.get_alias(x))

    print(' - Predicate augmentation...')
    filtered_df['property_label'] = filtered_df['property_id'].apply(lambda x: Wd_API.get_label(x, True))
    filtered_df['property_desc'] = filtered_df['property_id'].apply(lambda x: Wd_API.get_desc(x))
    filtered_df['property_alias'] = filtered_df['property_id'].apply(lambda x: Wd_API.get_alias(x))

    print(' - Object augmentation...')
    filtered_df['object_label'] = filtered_df.apply(get_object_label_given_datatype, axis=1)
    filtered_df['object_desc'] = filtered_df.apply(get_object_desc_given_datatype, axis=1)
    filtered_df['object_alias'] = filtered_df.apply(get_object_alias_given_datatype, axis=1)


    no_subject_label_perc = filtered_df[filtered_df['entity_label'].apply(lambda x: x[0] == 'no-label')].shape[0] / filtered_df.shape[0] * 100
    print(' - No subject label %:', no_subject_label_perc, '%')

    no_predicate_label_perc = filtered_df[filtered_df['property_label'].apply(lambda x: x[0] == 'no-label')].shape[0] / filtered_df.shape[0] * 100
    print(' - No predicate label %:', no_predicate_label_perc, '%')

    no_object_label_perc = filtered_df[filtered_df['object_label'].apply(lambda x: x[0] == 'no-label')].shape[0] / filtered_df.shape[0] * 100
    print(' - No object label %:', no_object_label_perc, '%')
    return filtered_df

def urlParser(target_QID):
    Wd_API = wdutils.CachedWikidataAPI()
    Wd_API.languages = ['en']
    db = sqlite3.connect('wikidata_claims_refs_parsed.db')
    cursor = db.cursor()
    refs_columns = ['reference_id','reference_property_id', 'reference_index', 'reference_datatype', 'reference_value']
    cursor.execute('select * from refs where reference_datatype="url";')
    url_df = pd.DataFrame(cursor.fetchall())
    url_df.columns = refs_columns
    def reference_value_to_url(reference_value):
        if reference_value in ['novalue','somevalue']:
            return reference_value
        reference_value = ast.literal_eval(reference_value)
        assert reference_value['type'] == 'string'
        return reference_value['value']
    def reference_value_to_external_id(reference_value):
        if reference_value in ['novalue','somevalue']:
            return reference_value
        reference_value = ast.literal_eval(reference_value)
        assert reference_value['type'] == 'string'
        return reference_value['value']
    def get_formatter_url(entity_id):
        try:
            sparql_query = '''
                SELECT ?item ?itemLabel 
                WHERE 
                {
                wd:$1 wdt:P1630 ?item.
                SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }
                }
            '''.replace('$1',entity_id)
            sparql_results = Wd_API.query_sparql_endpoint(sparql_query)
            if len(sparql_results['results']['bindings']) > 0:
                return sparql_results['results']['bindings'][0]['item']['value']
            else:
                return 'no_formatter_url'
        except Exception:
            print(entity_id)
            print(sparql_results)
            raise
    url_df['url'] = url_df.reference_value.apply(reference_value_to_url)
    cursor.execute('select * from refs where reference_datatype="url";')
    ext_id_df = pd.DataFrame(cursor.fetchall())
    ext_id_df.columns = refs_columns
    ext_id_df['ext_id'] = ext_id_df.reference_value.apply(reference_value_to_external_id)
    ext_id_df['formatter_url'] = ext_id_df['reference_property_id'].apply(get_formatter_url)
    ext_id_df['url'] = ext_id_df.apply(lambda x : x['formatter_url'].replace('$1', x['ext_id']), axis=1)
    columns_for_join = ['reference_id', 'reference_property_id','reference_index','reference_datatype','url']
    url_df_pre_join = url_df[columns_for_join]
    ext_id_df_pre_join = ext_id_df[columns_for_join]
    all_url_df = pd.concat([url_df_pre_join,ext_id_df_pre_join])
    all_url_df = all_url_df.sort_values(['reference_id','reference_index'])
    # drop those with url = 'no_formatter_url'
    all_url_df = all_url_df[all_url_df['url'] != 'no_formatter_url'].reset_index(drop=True)
    # drop those with url = somevalue and novalue
    all_url_df = all_url_df[~all_url_df['url'].isin(['somevalue','novalue'])]
    reference_id_counts = all_url_df.reference_id.value_counts().reset_index()
    reference_id_counts.columns = ['reference_id', 'counts']
    reference_id_counts_equal_1 = reference_id_counts[reference_id_counts['counts'] == 1].reference_id.tolist()
    all_url_df_eq1 = all_url_df[all_url_df.reference_id.isin(reference_id_counts_equal_1)]
    all_url_df_eq1 = all_url_df_eq1.reset_index(drop=True).drop('reference_index', axis=1)
    return all_url_df_eq1

def htmlParser(url_set, qid):
    text_reference_sampled_df = url_set
    _RE_COMBINE_WHITESPACE = re.compile(r"\s+")
    text_reference_sampled_df['html'] = None
    for i, row in text_reference_sampled_df.iterrows():

        print(i, row.url)
        try:
            response = requests.get(row.url, timeout=10)
            if response.status_code == 200:
                html = response.text
                text_reference_sampled_df.loc[i, 'html'] = html
            else:
                print(f"not response, {response.status_code}")
                text_reference_sampled_df.loc[i, 'html'] = response.status_code
        except requests.exceptions.Timeout:
            print("Timeout occurred while fetching the URL:", row.url)
            text_reference_sampled_df.loc[i, 'html'] = 'TimeOut'
            pass  
        except Exception as e:
            print("An error occurred:", str(e))
            pass 
    text_reference_sampled_df_html = text_reference_sampled_df.copy()
    text_reference_sampled_df_html['entity_id'] = qid
    return text_reference_sampled_df_html

def claim2text(html_set):
    text_reference_sampled_df_html = html_set
    Wd_API = wdutils.CachedWikidataAPI()
    Wd_API.languages = ['en']
    db = sqlite3.connect('wikidata_claims_refs_parsed.db')
    cursor = db.cursor()
    claims_columns = ['entity_id','claim_id','rank','property_id','datatype','datavalue']
    refs_columns = ['reference_id', 'reference_property_id', 'reference_index', 'reference_datatype', 'reference_value']

    def reference_id_to_claim_id(reference_id):
        cursor.execute(f'select claim_id from claims_refs where reference_id="{reference_id}"')
        sql_result = cursor.fetchall()
        #return sql_result
        randomly_chosen_claim_id = np.array(sql_result).reshape(-1)
        return randomly_chosen_claim_id
            
    def reference_id_to_claim_data(reference_id):
        claim_ids = reference_id_to_claim_id(reference_id)
        r = []
        for claim_id in claim_ids:
            #print(claim_id)
            cursor.execute(f'select * from claims where claim_id="{claim_id}";')
            d = cursor.fetchall()
            r = r + d
        return r

    claim_data = []
    for reference_id in text_reference_sampled_df_html.reference_id:
        data = reference_id_to_claim_data(reference_id)    
        #print(data)
        data = [(reference_id,) + t for t in data]
        claim_data = claim_data + data
        #break

    claim_df = pd.DataFrame(claim_data, columns = ['reference_id'] + claims_columns)
    claim_df

    def claim_id_to_claim_url(claim_id):
        claim_id_parts = claim_id.split('$')
        return f'https://www.wikidata.org/wiki/{claim_id_parts[0]}#{claim_id}'

    BAD_DATATYPES = ['external-id','commonsMedia','url', 'globe-coordinate', 'wikibase-lexeme', 'wikibase-property']

    assert claim_df[~claim_df.datatype.isin(BAD_DATATYPES)].reference_id.unique().shape\
        == claim_df.reference_id.unique().shape

    print(claim_df.reference_id.unique().shape[0])
    claim_df = claim_df[~claim_df.datatype.isin(BAD_DATATYPES)].reset_index(drop=True)

    from tqdm.auto import tqdm
    tqdm.pandas()

    claim_df[['entity_label','entity_label_lan']] = pd.DataFrame(
        claim_df.entity_id.progress_apply(Wd_API.get_label, non_language_set=True).tolist()
    )
    claim_df[['property_label','property_label_lan']] = pd.DataFrame(
        claim_df.property_id.progress_apply(Wd_API.get_label, non_language_set=True).tolist()
    )

    claim_df[['entity_alias','entity_alias_lan']] = pd.DataFrame(
        claim_df.entity_id.progress_apply(Wd_API.get_alias, non_language_set=True).tolist()
    )
    claim_df[['property_alias','property_alias_lan']] = pd.DataFrame(
        claim_df.property_id.progress_apply(Wd_API.get_alias, non_language_set=True).tolist()
    )

    claim_df[['entity_desc','entity_desc_lan']] = pd.DataFrame(
        claim_df.entity_id.progress_apply(Wd_API.get_desc, non_language_set=True).tolist()
    )
    claim_df[['property_desc','property_desc_lan']] = pd.DataFrame(
        claim_df.property_id.progress_apply(Wd_API.get_desc, non_language_set=True).tolist()
    )

    claim_df['object_label'] = claim_df.apply(get_object_label_given_datatype, axis=1)
    claim_df['object_alias'] = claim_df.apply(get_object_alias_given_datatype, axis=1)
    claim_df['object_desc'] = claim_df.apply(get_object_desc_given_datatype, axis=1)

    claim_df['object_label'], claim_df['object_label_lan'] = zip(*claim_df['object_label'].apply(lambda x: x if isinstance(x, tuple) else (x, '')))
    claim_df['object_alias'], claim_df['object_alias_lan'] = zip(*claim_df['object_alias'].apply(lambda x: x if isinstance(x, tuple) else (x, '')))
    claim_df['object_desc'], claim_df['object_desc_lan'] = zip(*claim_df['object_desc'].apply(lambda x: x if isinstance(x, tuple) else (x, '')))

    # Removing bad object labels
    claim_df = claim_df[claim_df['object_label_lan'] != 'none'].reset_index(drop=True)
    return claim_df

def html2text(html_set):
    reference_html_df = html_set
    _RE_COMBINE_WHITESPACE = re.compile(r"\s+")
    ft_model = fasttext.load_model('base/lid.176.ftz')
    def predict_language(text, k=20):
        ls, scores = ft_model.predict(text, k=k)  # top 20 matching languages
        ls = [l.replace('__label__','') for l in ls]
        return list(zip(ls,scores))
    def get_url_language(html):
        try:
            soup = BeautifulSoup(html, "lxml")
            [s.decompose() for s in soup("script")]  # remove <script> elements
            if soup.body == None:
                return ('no body', None)
            body_text = _RE_COMBINE_WHITESPACE.sub(" ", soup.body.get_text(' ')).strip()
            return predict_language(body_text, k=1)[0]
        except Exception:
            raise     
    def get_text_p_tags(soup):
        p_tags = soup.find_all('p')
        text = [p.getText().strip() for p in p_tags if p.getText()]
        return '\n'.join(text)
    def clean_text_line_by_line(text, join=True, ch_join = ' ', verb=True):
        # text = soup.body.get_text()
        # break into lines and remove leading and trailing space on each
        lines = list(text.splitlines())
        lines = (line.strip() for line in lines)
        # for each line, lets correct double spaces into single space
        lines = (re.sub(r' {2,}', ' ', line) for line in lines)
        # for each line, lets correct punctuation spaced to the left    
        lines = (re.sub(r' ([.,:;!?\\-])', r'\1', line) for line in lines)       
        # put periods if missing    
        lines = [line+'.' if line and line[-1] not in string.punctuation else line for i, line in enumerate(lines)]  
        
        if verb:
            for i, line in enumerate(lines):
                print(i,line)
        # drop blank lines
        if join:
            return ch_join.join([line for line in lines if line])
        else:
            return [line for line in lines if line]

    def apply_manual_rules(text):
        # RULE: A line ending with a ':' followed by whitespaces and a newline is likely a continuing line and should be joined
        #text = re.sub(
        #   r':\s*\n', 
        #   r': ', 
        #   text
        #)
        # RULE: Remove [1] reference numbers
        text = re.sub(r'\[[0-9]+\]', '', text)
        return text
    def retrieve_text_from_html(html, soup_parser = 'lxml', verb=True, join=True):
        if not isinstance(html, str) or 'DOCTYPE html' not in html:
            return 'No body'
        soup = BeautifulSoup(html, soup_parser)
        for script in soup(["script", "style"]):
            script.decompose()
        if soup.body == None:
            return 'No body'
        [s.unwrap() for s in soup.body.find_all('strong')]

        for p in soup.body.find_all('p'):
            p.string = _RE_COMBINE_WHITESPACE.sub(" ", p.get_text('')).strip()
        
        #DECOMPOSE ALL BAD TAGS
        #--------------
        #for c in ['warningbox', 'metadata', 'references', 'navbox', 'toc', 'catlinks']:
        #    for e in soup.body.find_all(class_=c):
        #        print('decomposed',e)
        #        e.decompose()
        
        # DECOMPOSE INVISIBLE ELEMENTS
        #for e in soup.body.find_all():
        #    if e.hidden:
        #        print('decomposed',e)
        #        e.decompose()
        #    else:
        #        if e.attrs is not None:
        #            #print(e)
        #            #print('-')
        #            style = e.get('style')
        #            if style and 'display' in style and 'none' in style:
        #                print('decomposed',e)
        #                e.decompose()
        #                #print(e, style)
        #--------------
        
        #print(soup.body)
        
        # BOILERPLATE REMOVAL OPTIONS
        #1. jusText
        #text = justext.justext(html, justext.get_stoplist("English"))
        #text = '\n'.join([paragraph.text for paragraph in text if not paragraph.is_boilerplate])

        #2. boilerpy3
        #html = soup.body
        #text = extractor.get_content(soup.prettify())

        #3. Just extracting from 'text tags' like p
        #simple rules (does not work depending on website, like on artgallery.yale, anything without clear paragraphic style)
        #text = get_text_p_tags(soup)

        #4. NONE
        text = soup.body.get_text(' ').strip() # NOT GETTING FROM THE WHOLE SOUP, JUST BODY TO AVOID TITLES
        
        #POST PROCESSING
        text = apply_manual_rules(text)
        text = clean_text_line_by_line(text, ch_join = ' ', verb=verb, join=join)

        if not text:
            return 'No extractable text' if join else ['No extractable text']
        else:
            return text
    i=0
    print(i)
    print(reference_html_df.url.iloc[i])

    reference_html_df['extracted_sentences'] = reference_html_df.html.progress_apply(retrieve_text_from_html, join=False, verb=False)

    join_ch = ' '
    reference_html_df['extracted_text'] = reference_html_df.extracted_sentences.apply(lambda x : join_ch.join(x))

    splitter = SentenceSplitter(language='en')

    seg = pysbd.Segmenter(language="en", clean=False)

    if not spacy.util.is_package("en_core_web_lg"):
        os.system("python -m spacy download en_core_web_lg")

    nlp = spacy.load("en_core_web_lg")

    text = reference_html_df.loc[0,'extracted_text']

    # OPTION 1
    # This gets some things wrong, such as Smt.=Shrimati ending a sentence, or any
    # initials like P. N. Nampoothiri or Lt. Col.
    #sents = sent_tokenize(text)

    # OPTION 2
    # Also breaks titles and initials like above, but additionally gets parenthesis wrong, like
    # Amma Maharani [break](queen mother) [break] of Travancore.
    #sents = seg.segment(text)

    # OPTION 3
    # Same as above plus new ones, like breaking contractions (like m. for married)
    #sents = splitter.split(text)

    # OPTION 4
    # By far the best option, makes way less of the mistakes above, but not none. So let's adopt a strategy so ease this.
    sents =  [s for s in nlp(text).sents]


    reference_html_df['nlp_sentences'] = reference_html_df.extracted_text.progress_apply(lambda x : [str(s) for s in nlp(x).sents])
    reference_html_df['nlp_sentences_slide_2'] = reference_html_df['nlp_sentences'].progress_apply(
        lambda x : [' '.join([a,b]) for a,b in list(zip(x,x[1:]+['']))]
    )

    assert type(reference_html_df.loc[0,'nlp_sentences']) == list
    assert type(reference_html_df.loc[0,'nlp_sentences'][0]) == str
    assert type(reference_html_df.loc[0,'nlp_sentences_slide_2']) == list
    assert type(reference_html_df.loc[0,'nlp_sentences_slide_2'][0]) == str
    return reference_html_df

if __name__ == '__main__':
    conn = sqlite3.connect('wikidata_claims_refs_parsed.db')
    target_QID = 'Q3621696'
    claimParser(target_QID) #save results in .db
    filtered_df = propertyFiltering(target_QID) #update db and return dataframe after filtering
    url_set = urlParser(target_QID) #from ref table in .db
    html_set = htmlParser(url_set, target_QID) #Original html docs collection
    try:
        claim_text = claim2text(html_set) #Claims generation
        html_text = html2text(html_set)
        claim_text = claim_text.astype(str)
        html_text = html_text.astype(str)
        claim_text.to_sql('claim_text', conn, if_exists='replace', index=False)
        html_text.to_sql('html_text', conn, if_exists='replace', index=False)
    except Exception as e:
        print(f"No accessible html documents")
        

    conn.commit()
    conn.close()
    #augmented_df = textualAugmentation(filtered_df) #textual information augmentation including label, desc, and alias