Spaces:
Build error
Build error
File size: 7,769 Bytes
51da11a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# Adapted from:
# https://github.com/csteinmetz1/micro-tcn/blob/main/microtcn/utils.py
import os
import csv
import torch
import fnmatch
import numpy as np
import random
from enum import Enum
import pyloudnorm as pyln
class DSPMode(Enum):
NONE = "none"
TRAIN_INFER = "train_infer"
INFER = "infer"
def __str__(self):
return self.value
def loudness_normalize(x, sample_rate, target_loudness=-24.0):
x = x.view(1, -1)
stereo_audio = x.repeat(2, 1).permute(1, 0).numpy()
meter = pyln.Meter(sample_rate)
loudness = meter.integrated_loudness(stereo_audio)
norm_x = pyln.normalize.loudness(
stereo_audio,
loudness,
target_loudness,
)
x = torch.tensor(norm_x).permute(1, 0)
x = x[0, :].view(1, -1)
return x
def get_random_file_id(keys):
# generate a random index into the keys of the input files
rand_input_idx = torch.randint(0, len(keys) - 1, [1])[0]
# find the key (file_id) correponding to the random index
rand_input_file_id = list(keys)[rand_input_idx]
return rand_input_file_id
def get_random_patch(audio_file, length, check_silence=True):
silent = True
while silent:
start_idx = int(torch.rand(1) * (audio_file.num_frames - length))
stop_idx = start_idx + length
patch = audio_file.audio[:, start_idx:stop_idx].clone().detach()
if (patch ** 2).mean() > 1e-4 or not check_silence:
silent = False
return start_idx, stop_idx
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2 ** 32
np.random.seed(worker_seed)
random.seed(worker_seed)
def getFilesPath(directory, extension):
n_path = []
for path, subdirs, files in os.walk(directory):
for name in files:
if fnmatch.fnmatch(name, extension):
n_path.append(os.path.join(path, name))
n_path.sort()
return n_path
def count_parameters(model, trainable_only=True):
if trainable_only:
if len(list(model.parameters())) > 0:
params = sum(p.numel() for p in model.parameters() if p.requires_grad)
else:
params = 0
else:
if len(list(model.parameters())) > 0:
params = sum(p.numel() for p in model.parameters())
else:
params = 0
return params
def system_summary(system):
print(f"Encoder: {count_parameters(system.encoder)/1e6:0.2f} M")
print(f"Processor: {count_parameters(system.processor)/1e6:0.2f} M")
if hasattr(system, "adv_loss_fn"):
for idx, disc in enumerate(system.adv_loss_fn.discriminators):
print(f"Discriminator {idx+1}: {count_parameters(disc)/1e6:0.2f} M")
def center_crop(x, length: int):
if x.shape[-1] != length:
start = (x.shape[-1] - length) // 2
stop = start + length
x = x[..., start:stop]
return x
def causal_crop(x, length: int):
if x.shape[-1] != length:
stop = x.shape[-1] - 1
start = stop - length
x = x[..., start:stop]
return x
def denormalize(norm_val, max_val, min_val):
return (norm_val * (max_val - min_val)) + min_val
def normalize(denorm_val, max_val, min_val):
return (denorm_val - min_val) / (max_val - min_val)
def get_random_patch(audio_file, length, energy_treshold=1e-4):
"""Produce sample indicies for a random patch of size `length`.
This function will check the energy of the selected patch to
ensure that it is not complete silence. If silence is found,
it will continue searching for a non-silent patch.
Args:
audio_file (AudioFile): Audio file object.
length (int): Number of samples in random patch.
Returns:
start_idx (int): Starting sample index
stop_idx (int): Stop sample index
"""
silent = True
while silent:
start_idx = int(torch.rand(1) * (audio_file.num_frames - length))
stop_idx = start_idx + length
patch = audio_file.audio[:, start_idx:stop_idx]
if (patch ** 2).mean() > energy_treshold:
silent = False
return start_idx, stop_idx
def split_dataset(file_list, subset, train_frac):
"""Given a list of files, split into train/val/test sets.
Args:
file_list (list): List of audio files.
subset (str): One of "train", "val", or "test".
train_frac (float): Fraction of the dataset to use for training.
Returns:
file_list (list): List of audio files corresponding to subset.
"""
assert train_frac > 0.1 and train_frac < 1.0
total_num_examples = len(file_list)
train_num_examples = int(total_num_examples * train_frac)
val_num_examples = int(total_num_examples * (1 - train_frac) / 2)
test_num_examples = total_num_examples - (train_num_examples + val_num_examples)
if train_num_examples < 0:
raise ValueError(
f"No examples in training set. Try increasing train_frac: {train_frac}."
)
elif val_num_examples < 0:
raise ValueError(
f"No examples in validation set. Try decreasing train_frac: {train_frac}."
)
elif test_num_examples < 0:
raise ValueError(
f"No examples in test set. Try decreasing train_frac: {train_frac}."
)
if subset == "train":
start_idx = 0
stop_idx = train_num_examples
elif subset == "val":
start_idx = train_num_examples
stop_idx = start_idx + val_num_examples
elif subset == "test":
start_idx = train_num_examples + val_num_examples
stop_idx = start_idx + test_num_examples + 1
else:
raise ValueError("Invalid subset: {subset}.")
return file_list[start_idx:stop_idx]
def rademacher(size):
"""Generates random samples from a Rademacher distribution +-1
Args:
size (int):
"""
m = torch.distributions.binomial.Binomial(1, 0.5)
x = m.sample(size)
x[x == 0] = -1
return x
def get_subset(csv_file):
subset_files = []
with open(csv_file) as fp:
reader = csv.DictReader(fp)
for row in reader:
subset_files.append(row["filepath"])
return list(set(subset_files))
def conform_length(x: torch.Tensor, length: int):
"""Crop or pad input on last dim to match `length`."""
if x.shape[-1] < length:
padsize = length - x.shape[-1]
x = torch.nn.functional.pad(x, (0, padsize))
elif x.shape[-1] > length:
x = x[..., :length]
return x
def linear_fade(
x: torch.Tensor,
fade_ms: float = 50.0,
sample_rate: float = 22050,
):
"""Apply fade in and fade out to last dim."""
fade_samples = int(fade_ms * 1e-3 * 22050)
fade_in = torch.linspace(0.0, 1.0, steps=fade_samples)
fade_out = torch.linspace(1.0, 0.0, steps=fade_samples)
# fade in
x[..., :fade_samples] *= fade_in
# fade out
x[..., -fade_samples:] *= fade_out
return x
# def get_random_patch(x, sample_rate, length_samples):
# length = length_samples
# silent = True
# while silent:
# start_idx = np.random.randint(0, x.shape[-1] - length - 1)
# stop_idx = start_idx + length
# x_crop = x[0:1, start_idx:stop_idx]
# # check for silence
# frames = length // sample_rate
# silent_frames = []
# for n in range(frames):
# start_idx = n * sample_rate
# stop_idx = start_idx + sample_rate
# x_frame = x_crop[0:1, start_idx:stop_idx]
# if (x_frame ** 2).mean() > 3e-4:
# silent_frames.append(False)
# else:
# silent_frames.append(True)
# silent = True if any(silent_frames) else False
# x_crop /= x_crop.abs().max()
# return x_crop
|