Spaces:
Running
Running
File size: 13,243 Bytes
affb36e 811568b affb36e 5bdbec5 affb36e 811568b affb36e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import streamlit as st
import pandas as pd
import pyarrow.parquet as pq
import pyarrow.dataset as ds
import time
import os
import plotly.graph_objects as go
import gc
import numpy as np
from huggingface_hub import hf_hub_download
from huggingface_hub import login
st.set_page_config(layout="wide")
hf_token = os.getenv('HF_TOKEN')
hf_repo = os.getenv('HF_REPO')
login(token=hf_token)
data_source = st.sidebar.radio("Source", ["Danbooru", "Gelbooru", "Rule 34"], index=0)
if data_source == "Danbooru":
parquet_file = hf_hub_download(repo_id=hf_repo, filename=os.getenv('PARQUET_FILE1'), repo_type="dataset")
elif data_source == "Gelbooru":
parquet_file = hf_hub_download(repo_id=hf_repo, filename=os.getenv('PARQUET_FILE2'), repo_type="dataset")
elif data_source == "Rule 34":
parquet_file = hf_hub_download(repo_id=hf_repo, filename=os.getenv('PARQUET_FILE3'), repo_type="dataset")
@st.cache_resource
def load_parquet_metadata(parquet_file):
try:
parquet_dataset = pq.ParquetFile(parquet_file)
metadata = parquet_dataset.metadata
num_rows = metadata.num_rows
sample_df = next(parquet_dataset.iter_batches(batch_size=10)).to_pandas()
if 'post_id' in sample_df.columns:
try:
min_post_id = float('inf')
max_post_id = float('-inf')
for i in range(parquet_dataset.metadata.num_row_groups):
row_group = parquet_dataset.metadata.row_group(i)
for j in range(row_group.num_columns):
col = row_group.column(j)
if col.path_in_schema == 'post_id':
stats = col.statistics
if stats is not None:
min_post_id = min(min_post_id, stats.min)
max_post_id = max(max_post_id, stats.max)
if min_post_id == float('inf') or max_post_id == float('-inf'):
raise ValueError("Invalid post_id range")
except Exception as e:
st.warning(f"Unable to get post_id range from statistics: {str(e)}")
min_post_id = float('inf')
max_post_id = float('-inf')
with pq.ParquetReader(parquet_file) as reader:
first_batch = next(reader.iter_batches(batch_size=1000))
first_df = first_batch.to_pandas()
batch_min = first_df['post_id'].min()
batch_max = first_df['post_id'].max()
min_post_id = min(min_post_id, batch_min)
max_post_id = max(max_post_id, batch_max)
num_row_groups = reader.num_row_groups
sample_indices = [0, num_row_groups//2, num_row_groups-1]
for idx in sample_indices:
if idx >= 0 and idx < num_row_groups:
batch = reader.read_row_group(idx).to_pandas()
batch_min = batch['post_id'].min()
batch_max = batch['post_id'].max()
min_post_id = min(min_post_id, batch_min)
max_post_id = max(max_post_id, batch_max)
else:
min_post_id = 0
max_post_id = 100000
available_ratings = []
if 'rating' in sample_df.columns:
ratings_set = set()
for i in range(min(3, parquet_dataset.num_row_groups)):
sample = parquet_dataset.read_row_group(i, columns=['rating']).to_pandas()
ratings_set.update(sample['rating'].unique())
available_ratings = sorted(list(ratings_set))
else:
available_ratings = ['general']
print(f"Metadata loaded: {num_rows} rows, post_id range: {min_post_id}-{max_post_id}")
return {
'num_rows': num_rows,
'min_post_id': int(min_post_id),
'max_post_id': int(max_post_id),
'available_ratings': available_ratings,
'columns': sample_df.columns.tolist()
}
except Exception as e:
st.error(f"Error loading Parquet metadata: {str(e)}")
return {
'num_rows': 0,
'min_post_id': 0,
'max_post_id': 100000,
'available_ratings': ['general'],
'columns': []
}
def get_filtered_batch(parquet_file, filters, needed_columns, sort_option):
try:
dataset = ds.dataset(parquet_file, format='parquet')
pa_filters = []
for col, op, val in filters:
if col in ['post_id', 'ava_score', 'aesthetic_score']:
if op == '>=':
pa_filters.append(ds.field(col) >= val)
elif op == '<=':
pa_filters.append(ds.field(col) <= val)
elif op == 'in' and len(val) > 0:
rating_filters = [ds.field(col) == r for r in val]
if rating_filters:
or_expr = rating_filters[0]
for rf in rating_filters[1:]:
or_expr = or_expr | rf
pa_filters.append(or_expr)
final_filter = None
if pa_filters:
final_filter = pa_filters[0]
for f in pa_filters[1:]:
final_filter = final_filter & f
scanner = dataset.scanner(columns=needed_columns, filter=final_filter)
df = scanner.to_table().to_pandas()
df.set_index('post_id', inplace=True)
if sort_option == "Post ID (Descending)":
df = df.sort_values(by=df.index.name, ascending=False)
elif sort_option == "Post ID (Ascending)":
df = df.sort_values(by=df.index.name, ascending=True)
elif sort_option == "AVA Score":
df = df.sort_values(by='ava_score', ascending=False)
elif sort_option == "Aesthetic Score":
df = df.sort_values(by='aesthetic_score', ascending=False)
return df
except Exception as e:
st.error(f"Error reading batch: {str(e)}")
return pd.DataFrame()
def process_tags_for_filtering(df, selected_tags, undesired_tags):
if not selected_tags and not undesired_tags:
return df
mask = np.ones(len(df), dtype=bool)
if selected_tags:
for i, tags_list in enumerate(df['tags']):
if mask[i]:
if isinstance(tags_list, list):
tags_set = set(tags_list)
elif isinstance(tags_list, (np.ndarray, np.generic)):
tags_set = set(tags_list.tolist()) if tags_list.size > 0 else set()
elif tags_list:
tags_set = {tags_list}
else:
tags_set = set()
if not selected_tags.issubset(tags_set):
mask[i] = False
if undesired_tags:
for i, tags_list in enumerate(df['tags']):
if mask[i]:
if isinstance(tags_list, list):
tags_set = set(tags_list)
elif isinstance(tags_list, (np.ndarray, np.generic)):
tags_set = set(tags_list.tolist()) if tags_list.size > 0 else set()
elif tags_list:
tags_set = {tags_list}
else:
tags_set = set()
if undesired_tags.intersection(tags_set):
mask[i] = False
return df[mask]
@st.cache_data(ttl=600)
def get_filtered_data(parquet_file, filters_str, sort_option, selected_tags_str, undesired_tags_str, page_number, items_per_page):
filters = eval(filters_str)
selected_tags = set(eval(selected_tags_str))
undesired_tags = set(eval(undesired_tags_str))
needed_columns = ['post_id', 'tags', 'ava_score', 'aesthetic_score', 'rating', 'large_file_url']
df = get_filtered_batch(parquet_file, filters, needed_columns, sort_option)
if selected_tags or undesired_tags:
df = process_tags_for_filtering(df, selected_tags, undesired_tags)
return df
st.title(f'{data_source} Images')
metadata = load_parquet_metadata(parquet_file)
score_range = st.sidebar.slider('Select AVA Score range', min_value=0.0, max_value=10.0, value=(5.0, 10.0), step=0.1)
score_range_v2 = st.sidebar.slider('Select Aesthetic Score range', min_value=0.0, max_value=10.0, value=(9.0, 10.0), step=0.1)
min_post_id = metadata['min_post_id']
max_post_id = metadata['max_post_id']
post_id_range = st.sidebar.slider('Select Post ID range',
min_value=min_post_id,
max_value=max_post_id,
value=(min_post_id, max_post_id),
step=1000)
available_ratings = metadata['available_ratings']
selected_ratings = st.sidebar.multiselect(
'Select ratings to include',
options=available_ratings,
default=[],
help='Filter images by their rating category'
)
page_number = st.sidebar.number_input('Page', min_value=1, value=1, step=1)
items_per_page = 50
sort_option = st.sidebar.selectbox('Sort by', options=['Post ID (Descending)', 'Post ID (Ascending)', 'AVA Score', 'Aesthetic Score'], index=0)
user_input_tags = st.text_input('Enter tags (space-separated)', value='1girl scenery', help='Filter images based on tags. Use "-" to exclude tags.')
selected_tags = set([tag.strip() for tag in user_input_tags.split() if tag.strip() and not tag.strip().startswith('-')])
undesired_tags = set([tag[1:] for tag in user_input_tags.split() if tag.startswith('-')])
filters = [
('ava_score', '>=', score_range[0]),
('ava_score', '<=', score_range[1]),
('aesthetic_score', '>=', score_range_v2[0]),
('aesthetic_score', '<=', score_range_v2[1]),
('post_id', '>=', post_id_range[0]),
('post_id', '<=', post_id_range[1]),
]
if selected_ratings:
filters.append(('rating', 'in', selected_ratings))
filters_str = repr(filters)
selected_tags_str = repr(list(selected_tags))
undesired_tags_str = repr(list(undesired_tags))
start_time = time.time()
current_batch = get_filtered_data(
parquet_file, filters_str, sort_option,
selected_tags_str, undesired_tags_str,
page_number, items_per_page
)
print(f"Data retrieved in {time.time() - start_time:.2f} seconds")
batch_start = (page_number - 1) * items_per_page
end_idx = min(batch_start + items_per_page, len(current_batch))
current_data = current_batch.iloc[batch_start:end_idx] if batch_start < len(current_batch) else pd.DataFrame()
st.sidebar.write(f"Images on this page: {len(current_data)}")
st.sidebar.write(f"Total filtered sample: {len(current_batch)}")
columns_per_row = 5
rows = [current_data.iloc[i:i + columns_per_row] for i in range(0, len(current_data), columns_per_row)]
for row in rows:
cols = st.columns(columns_per_row)
for col, (_, row_data) in zip(cols, row.iterrows()):
with col:
post_id = row_data.name
if data_source == "Danbooru":
link = f"https://danbooru.donmai.us/posts/{post_id}"
elif data_source == "Gelbooru":
link = f"https://gelbooru.com/index.php?page=post&s=view&id={post_id}"
elif data_source == "Rule 34":
link = f"https://rule34.xxx/index.php?page=post&s=view&id={post_id}"
st.image(row_data['large_file_url'], caption=f"ID: {row_data.name}, AVA: {row_data['ava_score']:.2f}, Aesthetic: {row_data['aesthetic_score']:.2f}\n{link}", use_container_width=True)
def histogram_slider(df, column1, column2):
if df.empty:
return
sample_size = min(5000, len(df))
if len(df) > sample_size:
step = len(df) // sample_size
indices = np.arange(0, len(df), step)[:sample_size]
sample_data = df.iloc[indices]
else:
sample_data = df
hist1, bin_edges1 = np.histogram(sample_data[column1].dropna(), bins=30)
hist2, bin_edges2 = np.histogram(sample_data[column2].dropna(), bins=30)
fig = go.Figure()
fig.add_trace(go.Bar(
x=(bin_edges1[:-1] + bin_edges1[1:])/2,
y=hist1,
name=column1,
opacity=0.75,
width=(bin_edges1[1]-bin_edges1[0])
))
fig.add_trace(go.Bar(
x=(bin_edges2[:-1] + bin_edges2[1:])/2,
y=hist2,
name=column2,
opacity=0.75,
width=(bin_edges2[1]-bin_edges2[0])
))
fig.update_layout(
barmode='overlay',
bargap=0.1,
height=200,
margin=dict(l=0, r=0, t=0, b=0),
legend=dict(orientation='h', yanchor='bottom', y=-0.4, xanchor='center', x=0.5),
)
st.sidebar.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False})
del sample_data, hist1, hist2, bin_edges1, bin_edges2
gc.collect()
if not current_batch.empty:
start_time = time.time()
histogram_slider(current_batch, 'ava_score', 'aesthetic_score')
print(f"Histogram displayed: {time.time() - start_time:.2f} seconds") |