File size: 24,971 Bytes
26e126a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
from __future__ import annotations
from typing import TYPE_CHECKING, List

import logging
import json
import commentjson as cjson
import os
import sys
import requests
import urllib3
import platform
import base64
from io import BytesIO
from PIL import Image

from tqdm import tqdm
import colorama
from duckduckgo_search import ddg
import asyncio
import aiohttp
from enum import Enum
import uuid

from ..presets import *
from ..llama_func import *
from ..utils import *
from .. import shared
from ..config import retrieve_proxy, usage_limit
from modules import config
from .base_model import BaseLLMModel, ModelType


class OpenAIClient(BaseLLMModel):
    def __init__(
        self,
        model_name,
        api_key,
        system_prompt=INITIAL_SYSTEM_PROMPT,
        temperature=1.0,
        top_p=1.0,
        user_name=""
    ) -> None:
        super().__init__(
            model_name=model_name,
            temperature=temperature,
            top_p=top_p,
            system_prompt=system_prompt,
            user=user_name
        )
        self.api_key = api_key
        self.need_api_key = True
        self._refresh_header()

    def get_answer_stream_iter(self):
        response = self._get_response(stream=True)
        if response is not None:
            iter = self._decode_chat_response(response)
            partial_text = ""
            for i in iter:
                partial_text += i
                yield partial_text
        else:
            yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG

    def get_answer_at_once(self):
        response = self._get_response()
        response = json.loads(response.text)
        content = response["choices"][0]["message"]["content"]
        total_token_count = response["usage"]["total_tokens"]
        return content, total_token_count

    def count_token(self, user_input):
        input_token_count = count_token(construct_user(user_input))
        if self.system_prompt is not None and len(self.all_token_counts) == 0:
            system_prompt_token_count = count_token(
                construct_system(self.system_prompt)
            )
            return input_token_count + system_prompt_token_count
        return input_token_count

    def billing_info(self):
        try:
            curr_time = datetime.datetime.now()
            last_day_of_month = get_last_day_of_month(
                curr_time).strftime("%Y-%m-%d")
            first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d")
            usage_url = f"{shared.state.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}"
            try:
                usage_data = self._get_billing_data(usage_url)
            except Exception as e:
                logging.error(f"获取API使用情况失败:" + str(e))
                return i18n("**获取API使用情况失败**")
            # rounded_usage = "{:.5f}".format(usage_data["total_usage"] / 100)
            rounded_usage = round(usage_data["total_usage"] / 100, 5)
            usage_percent = round(usage_data["total_usage"] / usage_limit, 2)
            # return i18n("**本月使用金额** ") + f"\u3000 ${rounded_usage}"
            return """\
                <b>""" + i18n("本月使用金额") + f"""</b>
                <div class="progress-bar">
                    <div class="progress" style="width: {usage_percent}%;">
                        <span class="progress-text">{usage_percent}%</span>
                    </div>
                </div>
                <div style="display: flex; justify-content: space-between;"><span>${rounded_usage}</span><span>${usage_limit}</span></div>
                """
        except requests.exceptions.ConnectTimeout:
            status_text = (
                STANDARD_ERROR_MSG + CONNECTION_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
            )
            return status_text
        except requests.exceptions.ReadTimeout:
            status_text = STANDARD_ERROR_MSG + READ_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
            return status_text
        except Exception as e:
            import traceback
            traceback.print_exc()
            logging.error(i18n("获取API使用情况失败:") + str(e))
            return STANDARD_ERROR_MSG + ERROR_RETRIEVE_MSG

    def set_token_upper_limit(self, new_upper_limit):
        pass

    @shared.state.switching_api_key  # 在不开启多账号模式的时候,这个装饰器不会起作用
    def _get_response(self, stream=False):
        openai_api_key = self.api_key
        system_prompt = self.system_prompt
        history = self.history
        logging.debug(colorama.Fore.YELLOW +
                      f"{history}" + colorama.Fore.RESET)
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {openai_api_key}",
        }

        if system_prompt is not None:
            history = [construct_system(system_prompt), *history]

        payload = {
            "model": self.model_name,
            "messages": history,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "n": self.n_choices,
            "stream": stream,
            "presence_penalty": self.presence_penalty,
            "frequency_penalty": self.frequency_penalty,
        }

        if self.max_generation_token is not None:
            payload["max_tokens"] = self.max_generation_token
        if self.stop_sequence is not None:
            payload["stop"] = self.stop_sequence
        if self.logit_bias is not None:
            payload["logit_bias"] = self.logit_bias
        if self.user_identifier:
            payload["user"] = self.user_identifier

        if stream:
            timeout = TIMEOUT_STREAMING
        else:
            timeout = TIMEOUT_ALL

        # 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
        if shared.state.completion_url != COMPLETION_URL:
            logging.info(f"使用自定义API URL: {shared.state.completion_url}")

        with retrieve_proxy():
            try:
                response = requests.post(
                    shared.state.completion_url,
                    headers=headers,
                    json=payload,
                    stream=stream,
                    timeout=timeout,
                )
            except:
                return None
        return response

    def _refresh_header(self):
        self.headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {self.api_key}",
        }

    def _get_billing_data(self, billing_url):
        with retrieve_proxy():
            response = requests.get(
                billing_url,
                headers=self.headers,
                timeout=TIMEOUT_ALL,
            )

        if response.status_code == 200:
            data = response.json()
            return data
        else:
            raise Exception(
                f"API request failed with status code {response.status_code}: {response.text}"
            )

    def _decode_chat_response(self, response):
        error_msg = ""
        for chunk in response.iter_lines():
            if chunk:
                chunk = chunk.decode()
                chunk_length = len(chunk)
                try:
                    chunk = json.loads(chunk[6:])
                except json.JSONDecodeError:
                    print(i18n("JSON解析错误,收到的内容: ") + f"{chunk}")
                    error_msg += chunk
                    continue
                if chunk_length > 6 and "delta" in chunk["choices"][0]:
                    if chunk["choices"][0]["finish_reason"] == "stop":
                        break
                    try:
                        yield chunk["choices"][0]["delta"]["content"]
                    except Exception as e:
                        # logging.error(f"Error: {e}")
                        continue
        if error_msg:
            raise Exception(error_msg)

    def set_key(self, new_access_key):
        ret = super().set_key(new_access_key)
        self._refresh_header()
        return ret


class ChatGLM_Client(BaseLLMModel):
    def __init__(self, model_name, user_name="") -> None:
        super().__init__(model_name=model_name, user=user_name)
        from transformers import AutoTokenizer, AutoModel
        import torch
        global CHATGLM_TOKENIZER, CHATGLM_MODEL
        if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None:
            system_name = platform.system()
            model_path = None
            if os.path.exists("models"):
                model_dirs = os.listdir("models")
                if model_name in model_dirs:
                    model_path = f"models/{model_name}"
            if model_path is not None:
                model_source = model_path
            else:
                model_source = f"THUDM/{model_name}"
            CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained(
                model_source, trust_remote_code=True
            )
            quantified = False
            if "int4" in model_name:
                quantified = True
            model = AutoModel.from_pretrained(
                model_source, trust_remote_code=True
            )
            if torch.cuda.is_available():
                # run on CUDA
                logging.info("CUDA is available, using CUDA")
                model = model.half().cuda()
            # mps加速还存在一些问题,暂时不使用
            elif system_name == "Darwin" and model_path is not None and not quantified:
                logging.info("Running on macOS, using MPS")
                # running on macOS and model already downloaded
                model = model.half().to("mps")
            else:
                logging.info("GPU is not available, using CPU")
                model = model.float()
            model = model.eval()
            CHATGLM_MODEL = model

    def _get_glm_style_input(self):
        history = [x["content"] for x in self.history]
        query = history.pop()
        logging.debug(colorama.Fore.YELLOW +
                      f"{history}" + colorama.Fore.RESET)
        assert (
            len(history) % 2 == 0
        ), f"History should be even length. current history is: {history}"
        history = [[history[i], history[i + 1]]
                   for i in range(0, len(history), 2)]
        return history, query

    def get_answer_at_once(self):
        history, query = self._get_glm_style_input()
        response, _ = CHATGLM_MODEL.chat(
            CHATGLM_TOKENIZER, query, history=history)
        return response, len(response)

    def get_answer_stream_iter(self):
        history, query = self._get_glm_style_input()
        for response, history in CHATGLM_MODEL.stream_chat(
            CHATGLM_TOKENIZER,
            query,
            history,
            max_length=self.token_upper_limit,
            top_p=self.top_p,
            temperature=self.temperature,
        ):
            yield response


class LLaMA_Client(BaseLLMModel):
    def __init__(
        self,
        model_name,
        lora_path=None,
        user_name=""
    ) -> None:
        super().__init__(model_name=model_name, user=user_name)
        from lmflow.datasets.dataset import Dataset
        from lmflow.pipeline.auto_pipeline import AutoPipeline
        from lmflow.models.auto_model import AutoModel
        from lmflow.args import ModelArguments, DatasetArguments, InferencerArguments

        self.max_generation_token = 1000
        self.end_string = "\n\n"
        # We don't need input data
        data_args = DatasetArguments(dataset_path=None)
        self.dataset = Dataset(data_args)
        self.system_prompt = ""

        global LLAMA_MODEL, LLAMA_INFERENCER
        if LLAMA_MODEL is None or LLAMA_INFERENCER is None:
            model_path = None
            if os.path.exists("models"):
                model_dirs = os.listdir("models")
                if model_name in model_dirs:
                    model_path = f"models/{model_name}"
            if model_path is not None:
                model_source = model_path
            else:
                model_source = f"decapoda-research/{model_name}"
                # raise Exception(f"models目录下没有这个模型: {model_name}")
            if lora_path is not None:
                lora_path = f"lora/{lora_path}"
            model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None,
                                        use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
            pipeline_args = InferencerArguments(
                local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')

            with open(pipeline_args.deepspeed, "r") as f:
                ds_config = json.load(f)
            LLAMA_MODEL = AutoModel.get_model(
                model_args,
                tune_strategy="none",
                ds_config=ds_config,
            )
            LLAMA_INFERENCER = AutoPipeline.get_pipeline(
                pipeline_name="inferencer",
                model_args=model_args,
                data_args=data_args,
                pipeline_args=pipeline_args,
            )

    def _get_llama_style_input(self):
        history = []
        instruction = ""
        if self.system_prompt:
            instruction = (f"Instruction: {self.system_prompt}\n")
        for x in self.history:
            if x["role"] == "user":
                history.append(f"{instruction}Input: {x['content']}")
            else:
                history.append(f"Output: {x['content']}")
        context = "\n\n".join(history)
        context += "\n\nOutput: "
        return context

    def get_answer_at_once(self):
        context = self._get_llama_style_input()

        input_dataset = self.dataset.from_dict(
            {"type": "text_only", "instances": [{"text": context}]}
        )

        output_dataset = LLAMA_INFERENCER.inference(
            model=LLAMA_MODEL,
            dataset=input_dataset,
            max_new_tokens=self.max_generation_token,
            temperature=self.temperature,
        )

        response = output_dataset.to_dict()["instances"][0]["text"]
        return response, len(response)

    def get_answer_stream_iter(self):
        context = self._get_llama_style_input()
        partial_text = ""
        step = 1
        for _ in range(0, self.max_generation_token, step):
            input_dataset = self.dataset.from_dict(
                {"type": "text_only", "instances": [
                    {"text": context + partial_text}]}
            )
            output_dataset = LLAMA_INFERENCER.inference(
                model=LLAMA_MODEL,
                dataset=input_dataset,
                max_new_tokens=step,
                temperature=self.temperature,
            )
            response = output_dataset.to_dict()["instances"][0]["text"]
            if response == "" or response == self.end_string:
                break
            partial_text += response
            yield partial_text


class XMChat(BaseLLMModel):
    def __init__(self, api_key, user_name=""):
        super().__init__(model_name="xmchat", user=user_name)
        self.api_key = api_key
        self.session_id = None
        self.reset()
        self.image_bytes = None
        self.image_path = None
        self.xm_history = []
        self.url = "https://xmbot.net/web"
        self.last_conv_id = None

    def reset(self):
        self.session_id = str(uuid.uuid4())
        self.last_conv_id = None
        return [], "已重置"

    def image_to_base64(self, image_path):
        # 打开并加载图片
        img = Image.open(image_path)

        # 获取图片的宽度和高度
        width, height = img.size

        # 计算压缩比例,以确保最长边小于4096像素
        max_dimension = 2048
        scale_ratio = min(max_dimension / width, max_dimension / height)

        if scale_ratio < 1:
            # 按压缩比例调整图片大小
            new_width = int(width * scale_ratio)
            new_height = int(height * scale_ratio)
            img = img.resize((new_width, new_height), Image.ANTIALIAS)

        # 将图片转换为jpg格式的二进制数据
        buffer = BytesIO()
        if img.mode == "RGBA":
            img = img.convert("RGB")
        img.save(buffer, format='JPEG')
        binary_image = buffer.getvalue()

        # 对二进制数据进行Base64编码
        base64_image = base64.b64encode(binary_image).decode('utf-8')

        return base64_image

    def try_read_image(self, filepath):
        def is_image_file(filepath):
            # 判断文件是否为图片
            valid_image_extensions = [
                ".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"]
            file_extension = os.path.splitext(filepath)[1].lower()
            return file_extension in valid_image_extensions

        if is_image_file(filepath):
            logging.info(f"读取图片文件: {filepath}")
            self.image_bytes = self.image_to_base64(filepath)
            self.image_path = filepath
        else:
            self.image_bytes = None
            self.image_path = None

    def like(self):
        if self.last_conv_id is None:
            return "点赞失败,你还没发送过消息"
        data = {
            "uuid": self.last_conv_id,
            "appraise": "good"
        }
        requests.post(self.url, json=data)
        return "👍点赞成功,感谢反馈~"

    def dislike(self):
        if self.last_conv_id is None:
            return "点踩失败,你还没发送过消息"
        data = {
            "uuid": self.last_conv_id,
            "appraise": "bad"
        }
        requests.post(self.url, json=data)
        return "👎点踩成功,感谢反馈~"

    def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot):
        fake_inputs = real_inputs
        display_append = ""
        limited_context = False
        return limited_context, fake_inputs, display_append, real_inputs, chatbot

    def handle_file_upload(self, files, chatbot):
        """if the model accepts multi modal input, implement this function"""
        if files:
            for file in files:
                if file.name:
                    logging.info(f"尝试读取图像: {file.name}")
                    self.try_read_image(file.name)
            if self.image_path is not None:
                chatbot = chatbot + [((self.image_path,), None)]
            if self.image_bytes is not None:
                logging.info("使用图片作为输入")
                # XMChat的一轮对话中实际上只能处理一张图片
                self.reset()
                conv_id = str(uuid.uuid4())
                data = {
                    "user_id": self.api_key,
                    "session_id": self.session_id,
                    "uuid": conv_id,
                    "data_type": "imgbase64",
                    "data": self.image_bytes
                }
                response = requests.post(self.url, json=data)
                response = json.loads(response.text)
                logging.info(f"图片回复: {response['data']}")
        return None, chatbot, None

    def get_answer_at_once(self):
        question = self.history[-1]["content"]
        conv_id = str(uuid.uuid4())
        self.last_conv_id = conv_id
        data = {
            "user_id": self.api_key,
            "session_id": self.session_id,
            "uuid": conv_id,
            "data_type": "text",
            "data": question
        }
        response = requests.post(self.url, json=data)
        try:
            response = json.loads(response.text)
            return response["data"], len(response["data"])
        except Exception as e:
            return response.text, len(response.text)


def get_model(
    model_name,
    lora_model_path=None,
    access_key=None,
    temperature=None,
    top_p=None,
    system_prompt=None,
    user_name=""
) -> BaseLLMModel:
    msg = i18n("模型设置为了:") + f" {model_name}"
    model_type = ModelType.get_type(model_name)
    lora_selector_visibility = False
    lora_choices = []
    dont_change_lora_selector = False
    if model_type != ModelType.OpenAI:
        config.local_embedding = True
    # del current_model.model
    model = None
    try:
        if model_type == ModelType.OpenAI:
            logging.info(f"正在加载OpenAI模型: {model_name}")
            model = OpenAIClient(
                model_name=model_name,
                api_key=access_key,
                system_prompt=system_prompt,
                temperature=temperature,
                top_p=top_p,
                user_name=user_name,
            )
        elif model_type == ModelType.ChatGLM:
            logging.info(f"正在加载ChatGLM模型: {model_name}")
            model = ChatGLM_Client(model_name, user_name=user_name)
        elif model_type == ModelType.LLaMA and lora_model_path == "":
            msg = f"现在请为 {model_name} 选择LoRA模型"
            logging.info(msg)
            lora_selector_visibility = True
            if os.path.isdir("lora"):
                lora_choices = get_file_names(
                    "lora", plain=True, filetypes=[""])
            lora_choices = ["No LoRA"] + lora_choices
        elif model_type == ModelType.LLaMA and lora_model_path != "":
            logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}")
            dont_change_lora_selector = True
            if lora_model_path == "No LoRA":
                lora_model_path = None
                msg += " + No LoRA"
            else:
                msg += f" + {lora_model_path}"
            model = LLaMA_Client(
                model_name, lora_model_path, user_name=user_name)
        elif model_type == ModelType.XMChat:
            if os.environ.get("XMCHAT_API_KEY") != "":
                access_key = os.environ.get("XMCHAT_API_KEY")
            model = XMChat(api_key=access_key, user_name=user_name)
        elif model_type == ModelType.StableLM:
            from .StableLM import StableLM_Client
            model = StableLM_Client(model_name, user_name=user_name)
        elif model_type == ModelType.MOSS:
            from .MOSS import MOSS_Client
            model = MOSS_Client(model_name, user_name=user_name)
        elif model_type == ModelType.YuanAI:
            from .inspurai import Yuan_Client
            model = Yuan_Client(model_name, api_key=access_key, user_name=user_name, system_prompt=system_prompt)
        elif model_type == ModelType.Unknown:
            raise ValueError(f"未知模型: {model_name}")
        logging.info(msg)
        chatbot = gr.Chatbot.update(label=model_name)
    except Exception as e:
        logging.error(e)
        msg = f"{STANDARD_ERROR_MSG}: {e}"
    if dont_change_lora_selector:
        return model, msg, chatbot
    else:
        return model, msg, chatbot, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility)


if __name__ == "__main__":
    with open("config.json", "r") as f:
        openai_api_key = cjson.load(f)["openai_api_key"]
    # set logging level to debug
    logging.basicConfig(level=logging.DEBUG)
    # client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key)
    client = get_model(model_name="chatglm-6b-int4")
    chatbot = []
    stream = False
    # 测试账单功能
    logging.info(colorama.Back.GREEN + "测试账单功能" + colorama.Back.RESET)
    logging.info(client.billing_info())
    # 测试问答
    logging.info(colorama.Back.GREEN + "测试问答" + colorama.Back.RESET)
    question = "巴黎是中国的首都吗?"
    for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
        logging.info(i)
    logging.info(f"测试问答后history : {client.history}")
    # 测试记忆力
    logging.info(colorama.Back.GREEN + "测试记忆力" + colorama.Back.RESET)
    question = "我刚刚问了你什么问题?"
    for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
        logging.info(i)
    logging.info(f"测试记忆力后history : {client.history}")
    # 测试重试功能
    logging.info(colorama.Back.GREEN + "测试重试功能" + colorama.Back.RESET)
    for i in client.retry(chatbot=chatbot, stream=stream):
        logging.info(i)
    logging.info(f"重试后history : {client.history}")
    # # 测试总结功能
    # print(colorama.Back.GREEN + "测试总结功能" + colorama.Back.RESET)
    # chatbot, msg = client.reduce_token_size(chatbot=chatbot)
    # print(chatbot, msg)
    # print(f"总结后history: {client.history}")