Spaces:
Runtime error
Runtime error
File size: 17,453 Bytes
6fa82d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
from __future__ import annotations
import io
import os
import re
import subprocess
import textwrap
import time
import uuid
import wave
import emoji
import gradio as gr
import langid
import nltk
import numpy as np
import noisereduce as nr
from huggingface_hub import HfApi
# Download the 'punkt' tokenizer for the NLTK library
nltk.download("punkt")
# will use api to restart space on a unrecoverable error
HF_TOKEN = os.environ.get("HF_TOKEN")
REPO_ID = os.environ.get("REPO_ID")
api = HfApi(token=HF_TOKEN)
latent_map = {}
def get_latents(chatbot_voice, xtts_model, voice_cleanup=False):
global latent_map
if chatbot_voice not in latent_map:
speaker_wav = f"examples/{chatbot_voice}.wav"
if (voice_cleanup):
try:
cleanup_filter="lowpass=8000,highpass=75,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02"
resample_filter="-ac 1 -ar 22050"
out_filename = speaker_wav + str(uuid.uuid4()) + ".wav" #ffmpeg to know output format
#we will use newer ffmpeg as that has afftn denoise filter
shell_command = f"ffmpeg -y -i {speaker_wav} -af {cleanup_filter} {resample_filter} {out_filename}".split(" ")
command_result = subprocess.run([item for item in shell_command], capture_output=False,text=True, check=True)
speaker_wav=out_filename
print("Filtered microphone input")
except subprocess.CalledProcessError:
# There was an error - command exited with non-zero code
print("Error: failed filtering, use original microphone input")
else:
speaker_wav=speaker_wav
# gets condition latents from the model
# returns tuple (gpt_cond_latent, speaker_embedding)
latent_map[chatbot_voice] = xtts_model.get_conditioning_latents(audio_path=speaker_wav)
return latent_map[chatbot_voice]
def detect_language(prompt, xtts_supported_languages=None):
if xtts_supported_languages is None:
xtts_supported_languages = ["en","es","fr","de","it","pt","pl","tr","ru","nl","cs","ar","zh-cn","ja"]
# Fast language autodetection
if len(prompt)>15:
language_predicted=langid.classify(prompt)[0].strip() # strip need as there is space at end!
if language_predicted == "zh":
#we use zh-cn on xtts
language_predicted = "zh-cn"
if language_predicted not in xtts_supported_languages:
print(f"Detected a language not supported by xtts :{language_predicted}, switching to english for now")
gr.Warning(f"Language detected '{language_predicted}' can not be spoken properly 'yet' ")
language= "en"
else:
language = language_predicted
print(f"Language: Predicted sentence language:{language_predicted} , using language for xtts:{language}")
else:
# Hard to detect language fast in short sentence, use english default
language = "en"
print(f"Language: Prompt is short or autodetect language disabled using english for xtts")
return language
def get_voice_streaming(prompt, language, chatbot_voice, xtts_model, suffix="0"):
gpt_cond_latent, speaker_embedding = get_latents(chatbot_voice, xtts_model)
try:
t0 = time.time()
chunks = xtts_model.inference_stream(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
repetition_penalty=7.0,
temperature=0.85,
)
first_chunk = True
for i, chunk in enumerate(chunks):
if first_chunk:
first_chunk_time = time.time() - t0
metrics_text = f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n"
first_chunk = False
#print(f"Received chunk {i} of audio length {chunk.shape[-1]}")
# In case output is required to be multiple voice files
# out_file = f'{char}_{i}.wav'
# write(out_file, 24000, chunk.detach().cpu().numpy().squeeze())
# audio = AudioSegment.from_file(out_file)
# audio.export(out_file, format='wav')
# return out_file
# directly return chunk as bytes for streaming
chunk = chunk.detach().cpu().numpy().squeeze()
chunk = (chunk * 32767).astype(np.int16)
yield chunk.tobytes()
except RuntimeError as e:
if "device-side assert" in str(e):
# cannot do anything on cuda device side error, need tor estart
print(
f"Exit due to: Unrecoverable exception caused by prompt:{prompt}",
flush=True,
)
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
# HF Space specific.. This error is unrecoverable need to restart space
api.restart_space(REPO_ID=REPO_ID)
else:
print("RuntimeError: non device-side assert error:", str(e))
# Does not require warning happens on empty chunk and at end
###gr.Warning("Unhandled Exception encounter, please retry in a minute")
return None
return None
except:
return None
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=24000):
# This will create a wave header then append the frame input
# It should be first on a streaming wav file
# Other frames better should not have it (else you will hear some artifacts each chunk start)
wav_buf = io.BytesIO()
with wave.open(wav_buf, "wb") as vfout:
vfout.setnchannels(channels)
vfout.setsampwidth(sample_width)
vfout.setframerate(sample_rate)
vfout.writeframes(frame_input)
wav_buf.seek(0)
return wav_buf.read()
def format_prompt(message, history):
system_message = f"""
You are an empathetic, insightful, and supportive coach who helps people deal with challenges and celebrate achievements.
You help people feel better by asking questions to reflect on and evoke feelings of positivity, gratitude, joy, and love.
You show radical candor and tough love.
Respond in a casual and friendly tone.
Sprinkle in filler words, contractions, idioms, and other casual speech that we use in conversation.
Emulate the user’s speaking style and be concise in your response.
"""
prompt = (
"<s>[INST]" + system_message + "[/INST]"
)
for user_prompt, bot_response in history:
if user_prompt is not None:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
if message=="":
message="Hello"
prompt += f"[INST] {message} [/INST]"
return prompt
def generate_llm_output(
prompt,
history,
llm,
temperature=0.8,
max_tokens=256,
top_p=0.95,
stop_words=["<s>","[/INST]", "</s>"]
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
stop=stop_words
)
formatted_prompt = format_prompt(prompt, history)
try:
print("LLM Input:", formatted_prompt)
# Local GGUF
stream = llm(
formatted_prompt,
**generate_kwargs,
stream=True,
)
output = ""
for response in stream:
character= response["choices"][0]["text"]
if character in stop_words:
# end of context
return
if emoji.is_emoji(character):
# Bad emoji not a meaning messes chat from next lines
return
output += response["choices"][0]["text"]
yield output
except Exception as e:
print("Unhandled Exception: ", str(e))
gr.Warning("Unfortunately Mistral is unable to process")
output = "I do not know what happened but I could not understand you ."
return output
def get_sentence(history, llm):
history = [["", None]] if history is None else history
history[-1][1] = ""
sentence_list = []
sentence_hash_list = []
text_to_generate = ""
stored_sentence = None
stored_sentence_hash = None
for character in generate_llm_output(history[-1][0], history[:-1], llm):
history[-1][1] = character.replace("<|assistant|>","")
# It is coming word by word
text_to_generate = nltk.sent_tokenize(history[-1][1].replace("\n", " ").replace("<|assistant|>"," ").replace("<|ass>","").replace("[/ASST]","").replace("[/ASSI]","").replace("[/ASS]","").replace("","").strip())
if len(text_to_generate) > 1:
dif = len(text_to_generate) - len(sentence_list)
if dif == 1 and len(sentence_list) != 0:
continue
if dif == 2 and len(sentence_list) != 0 and stored_sentence is not None:
continue
# All this complexity due to trying append first short sentence to next one for proper language auto-detect
if stored_sentence is not None and stored_sentence_hash is None and dif>1:
#means we consumed stored sentence and should look at next sentence to generate
sentence = text_to_generate[len(sentence_list)+1]
elif stored_sentence is not None and len(text_to_generate)>2 and stored_sentence_hash is not None:
print("Appending stored")
sentence = stored_sentence + text_to_generate[len(sentence_list)+1]
stored_sentence_hash = None
else:
sentence = text_to_generate[len(sentence_list)]
# too short sentence just append to next one if there is any
# this is for proper language detection
if len(sentence)<=15 and stored_sentence_hash is None and stored_sentence is None:
if sentence[-1] in [".","!","?"]:
if stored_sentence_hash != hash(sentence):
stored_sentence = sentence
stored_sentence_hash = hash(sentence)
print("Storing:",stored_sentence)
continue
sentence_hash = hash(sentence)
if stored_sentence_hash is not None and sentence_hash == stored_sentence_hash:
continue
if sentence_hash not in sentence_hash_list:
sentence_hash_list.append(sentence_hash)
sentence_list.append(sentence)
print("New Sentence: ", sentence)
yield (sentence, history)
# return that final sentence token
try:
last_sentence = nltk.sent_tokenize(history[-1][1].replace("\n", " ").replace("<|ass>","").replace("[/ASST]","").replace("[/ASSI]","").replace("[/ASS]","").replace("","").strip())[-1]
sentence_hash = hash(last_sentence)
if sentence_hash not in sentence_hash_list:
if stored_sentence is not None and stored_sentence_hash is not None:
last_sentence = stored_sentence + last_sentence
stored_sentence = stored_sentence_hash = None
print("Last Sentence with stored:",last_sentence)
sentence_hash_list.append(sentence_hash)
sentence_list.append(last_sentence)
print("Last Sentence: ", last_sentence)
yield (last_sentence, history)
except:
print("ERROR on last sentence history is :", history)
# will generate speech audio file per sentence
def generate_speech_for_sentence(history, chatbot_voice, sentence, xtts_model, xtts_supported_languages=None, filter_output=True, return_as_byte=False):
language = "autodetect"
wav_bytestream = b""
if len(sentence)==0:
print("EMPTY SENTENCE")
return
# Sometimes prompt </s> coming on output remove it
# Some post process for speech only
sentence = sentence.replace("</s>", "")
# remove code from speech
sentence = re.sub("```.*```", "", sentence, flags=re.DOTALL)
sentence = re.sub("`.*`", "", sentence, flags=re.DOTALL)
sentence = re.sub("\(.*\)", "", sentence, flags=re.DOTALL)
sentence = sentence.replace("```", "")
sentence = sentence.replace("...", " ")
sentence = sentence.replace("(", " ")
sentence = sentence.replace(")", " ")
sentence = sentence.replace("<|assistant|>","")
if len(sentence)==0:
print("EMPTY SENTENCE after processing")
return
# A fast fix for last chacter, may produce weird sounds if it is with text
#if (sentence[-1] in ["!", "?", ".", ","]) or (sentence[-2] in ["!", "?", ".", ","]):
# # just add a space
# sentence = sentence[:-1] + " " + sentence[-1]
# regex does the job well
sentence= re.sub("([^\x00-\x7F]|\w)(\.|\。|\?|\!)",r"\1 \2\2",sentence)
print("Sentence for speech:", sentence)
try:
SENTENCE_SPLIT_LENGTH=350
if len(sentence)<SENTENCE_SPLIT_LENGTH:
# no problem continue on
sentence_list = [sentence]
else:
# Until now nltk likely split sentences properly but we need additional
# check for longer sentence and split at last possible position
# Do whatever necessary, first break at hypens then spaces and then even split very long words
sentence_list=textwrap.wrap(sentence,SENTENCE_SPLIT_LENGTH)
print("SPLITTED LONG SENTENCE:",sentence_list)
for sentence in sentence_list:
if any(c.isalnum() for c in sentence):
if language=="autodetect":
#on first call autodetect, nexts sentence calls will use same language
language = detect_language(sentence, xtts_supported_languages)
#exists at least 1 alphanumeric (utf-8)
audio_stream = get_voice_streaming(
sentence, language, chatbot_voice, xtts_model
)
else:
# likely got a ' or " or some other text without alphanumeric in it
audio_stream = None
# XTTS is actually using streaming response but we are playing audio by sentence
# If you want direct XTTS voice streaming (send each chunk to voice ) you may set DIRECT_STREAM=1 environment variable
if audio_stream is not None:
frame_length = 0
for chunk in audio_stream:
try:
wav_bytestream += chunk
frame_length += len(chunk)
except:
# hack to continue on playing. sometimes last chunk is empty , will be fixed on next TTS
continue
# Filter output for better voice
if filter_output:
data_s16 = np.frombuffer(wav_bytestream, dtype=np.int16, count=len(wav_bytestream)//2, offset=0)
float_data = data_s16 * 0.5**15
reduced_noise = nr.reduce_noise(y=float_data, sr=24000,prop_decrease =0.8,n_fft=1024)
wav_bytestream = (reduced_noise * 32767).astype(np.int16)
wav_bytestream = wav_bytestream.tobytes()
if audio_stream is not None:
if not return_as_byte:
audio_unique_filename = "/tmp/"+ str(uuid.uuid4())+".wav"
with wave.open(audio_unique_filename, "w") as f:
f.setnchannels(1)
# 2 bytes per sample.
f.setsampwidth(2)
f.setframerate(24000)
f.writeframes(wav_bytestream)
return (history , gr.Audio.update(value=audio_unique_filename, autoplay=True))
else:
return (history , gr.Audio.update(value=wav_bytestream, autoplay=True))
except RuntimeError as e:
if "device-side assert" in str(e):
# cannot do anything on cuda device side error, need tor estart
print(
f"Exit due to: Unrecoverable exception caused by prompt:{sentence}",
flush=True,
)
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
# HF Space specific.. This error is unrecoverable need to restart space
api.restart_space(REPO_ID=REPO_ID)
else:
print("RuntimeError: non device-side assert error:", str(e))
raise e
print("All speech ended")
return
|