Spaces:
Running
Running
File size: 12,073 Bytes
5fbe98e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import gradio as gr
import asyncio
from threading import RLock, Thread
from pathlib import Path
lock = RLock()
loaded_models = {}
model_info_dict = {}
def to_list(s):
return [x.strip() for x in s.split(",")]
def list_sub(a, b):
return [e for e in a if e not in b]
def list_uniq(l):
return sorted(set(l), key=l.index)
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30):
from huggingface_hub import HfApi
api = HfApi()
default_tags = ["diffusers"]
if not sort: sort = "last_modified"
models = []
try:
model_infos = api.list_models(author=author, pipeline_tag="text-to-image",
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit * 5)
except Exception as e:
print(f"Error: Failed to list models.")
print(e)
return models
for model in model_infos:
if not model.private and not model.gated:
if not_tag and not_tag in model.tags: continue
models.append(model.id)
if len(models) == limit: break
return models
def get_t2i_model_info_dict(repo_id: str):
from huggingface_hub import HfApi
api = HfApi()
info = {"md": "None"}
try:
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
model = api.model_info(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
return info
if model.private or model.gated: return info
try:
tags = model.tags
except Exception as e:
print(e)
return info
if not 'diffusers' in model.tags: return info
if 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
else: info["ver"] = "Other"
info["url"] = f"https://huggingface.co/{repo_id}/"
if model.card_data and model.card_data.tags:
info["tags"] = model.card_data.tags
info["downloads"] = model.downloads
info["likes"] = model.likes
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'β€: {info["likes"]}'] + [info["last_modified"]]
info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
return info
def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
from datetime import datetime, timezone, timedelta
progress(0, desc="Updating gallery...")
dt_now = datetime.now(timezone(timedelta(hours=9)))
basename = dt_now.strftime('%Y%m%d_%H%M%S_')
i = 1
if not images: return images
output_images = []
output_paths = []
for image in images:
filename = f'{image[1]}_{basename}{str(i)}.png'
i += 1
oldpath = Path(image[0])
newpath = oldpath
try:
if oldpath.stem == "image" and oldpath.exists():
newpath = oldpath.resolve().rename(Path(filename).resolve())
except Exception as e:
print(e)
pass
finally:
output_paths.append(str(newpath))
output_images.append((str(newpath), str(filename)))
progress(1, desc="Gallery updated.")
return gr.update(value=output_images), gr.update(value=output_paths)
def load_model(model_name: str):
global loaded_models
global model_info_dict
if model_name in loaded_models.keys(): return loaded_models[model_name]
try:
with lock:
loaded_models[model_name] = gr.load(f'models/{model_name}')
print(f"Loaded: {model_name}")
except Exception as e:
with lock:
if model_name in loaded_models.keys(): del loaded_models[model_name]
print(f"Failed to load: {model_name}")
print(e)
return None
try:
with lock:
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
except Exception as e:
with lock:
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
print(e)
return loaded_models[model_name]
async def async_load_models(models: list, limit: int=5, wait=10):
sem = asyncio.Semaphore(limit)
async def async_load_model(model: str):
async with sem:
try:
return await asyncio.to_thread(load_model, model)
except Exception as e:
print(e)
tasks = [asyncio.create_task(async_load_model(model)) for model in models]
return await asyncio.gather(*tasks, return_exceptions=True)
def load_models(models: list, limit: int=5):
loop = asyncio.new_event_loop()
try:
loop.run_until_complete(async_load_models(models, limit))
except Exception as e:
print(e)
pass
finally:
loop.close()
positive_prefix = {
"Pony": to_list("score_9, score_8_up, score_7_up"),
"Pony Anime": to_list("source_anime, anime, score_9, score_8_up, score_7_up"),
}
positive_suffix = {
"Common": to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres"),
"Anime": to_list("anime artwork, anime style, studio anime, highly detailed"),
}
negative_prefix = {
"Pony": to_list("score_6, score_5, score_4"),
"Pony Anime": to_list("score_6, score_5, score_4, source_pony, source_furry, source_cartoon"),
"Pony Real": to_list("score_6, score_5, score_4, source_anime, source_pony, source_furry, source_cartoon"),
}
negative_suffix = {
"Common": to_list("lowres, (bad), bad hands, bad feet, text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"),
"Pony Anime": to_list("busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends"),
"Pony Real": to_list("ugly, airbrushed, simple background, cgi, cartoon, anime"),
}
positive_all = negative_all = []
for k, v in (positive_prefix | positive_suffix).items():
positive_all = positive_all + v + [s.replace("_", " ") for s in v]
positive_all = list_uniq(positive_all)
for k, v in (negative_prefix | negative_suffix).items():
negative_all = negative_all + v + [s.replace("_", " ") for s in v]
positive_all = list_uniq(positive_all)
def recom_prompt(prompt: str = "", neg_prompt: str = "", pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
def flatten(src):
return [item for row in src for item in row]
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
prompts = list_sub(prompts, positive_all)
neg_prompts = list_sub(neg_prompts, negative_all)
last_empty_p = [""] if not prompts and type != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" else []
prefix_ps = flatten([positive_prefix.get(s, []) for s in pos_pre])
suffix_ps = flatten([positive_suffix.get(s, []) for s in pos_suf])
prefix_nps = flatten([negative_prefix.get(s, []) for s in neg_pre])
suffix_nps = flatten([negative_suffix.get(s, []) for s in neg_suf])
prompt = ", ".join(list_uniq(prefix_ps + prompts + suffix_ps) + last_empty_p)
neg_prompt = ", ".join(list_uniq(prefix_nps + neg_prompts + suffix_nps) + last_empty_np)
return prompt, neg_prompt
recom_prompt_type = {
"None": ([], [], [], []),
"Auto": ([], [], [], []),
"Common": ([], ["Common"], [], ["Common"]),
"Animagine": ([], ["Common", "Anime"], [], ["Common"]),
"Pony": (["Pony"], ["Common"], ["Pony"], ["Common"]),
"Pony Anime": (["Pony", "Pony Anime"], ["Common", "Anime"], ["Pony", "Pony Anime"], ["Common", "Pony Anime"]),
"Pony Real": (["Pony"], ["Common"], ["Pony", "Pony Real"], ["Common", "Pony Real"]),
}
enable_auto_recom_prompt = False
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
global enable_auto_recom_prompt
if type == "Auto": enable_auto_recom_prompt = True
else: enable_auto_recom_prompt = False
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
return recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
def set_recom_prompt_preset(type: str = "None"):
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
return pos_pre, pos_suf, neg_pre, neg_suf
def get_recom_prompt_type():
type = list(recom_prompt_type.keys())
type.remove("Auto")
return type
def get_positive_prefix():
return list(positive_prefix.keys())
def get_positive_suffix():
return list(positive_suffix.keys())
def get_negative_prefix():
return list(negative_prefix.keys())
def get_negative_suffix():
return list(negative_suffix.keys())
def get_model_info_md(model_name: str):
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
def change_model(model_name: str):
load_model(model_name)
return get_model_info_md(model_name)
def infer(prompt: str, neg_prompt: str, model_name: str):
from PIL import Image
import random
seed = ""
rand = random.randint(1, 500)
for i in range(rand):
seed += " "
caption = model_name.split("/")[-1]
try:
model = load_model(model_name)
if not model: return (Image.Image(), None)
image_path = model(prompt + seed)
image = Image.open(image_path).convert('RGBA')
except Exception as e:
print(e)
return (Image.Image(), None)
return (image, caption)
async def infer_multi(prompt: str, neg_prompt: str, results: list, image_num: float, model_name: str,
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], progress=gr.Progress(track_tqdm=True)):
#from tqdm.asyncio import tqdm_asyncio
image_num = int(image_num)
images = results if results else []
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
tasks = [asyncio.to_thread(infer, prompt, neg_prompt, model_name) for i in range(image_num)]
results = await asyncio.gather(*tasks, return_exceptions=True)
#results = await tqdm_asyncio.gather(*tasks)
if not results: results = []
for result in results:
with lock:
if result and result[1]: images.append(result)
yield images
async def infer_multi_random(prompt: str, neg_prompt: str, results: list, image_num: float,
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], progress=gr.Progress(track_tqdm=True)):
#from tqdm.asyncio import tqdm_asyncio
import random
image_num = int(image_num)
images = results if results else []
random.seed()
model_names = random.choices(list(loaded_models.keys()), k = image_num)
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
tasks = [asyncio.to_thread(infer, prompt, neg_prompt, model_name) for model_name in model_names]
results = await asyncio.gather(*tasks, return_exceptions=True)
#await tqdm_asyncio.gather(*tasks)
if not results: results = []
for result in results:
with lock:
if result and result[1]: images.append(result)
yield images
|