File size: 13,662 Bytes
ac07e15
 
 
 
 
 
 
 
 
 
 
 
 
 
76b9a66
ac07e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ff983
 
 
 
ac07e15
 
 
 
 
 
 
 
f0ff983
 
 
 
ac07e15
 
 
 
 
 
 
 
 
 
be33247
ac07e15
 
 
eb7d0ba
ac07e15
 
 
 
 
 
 
 
eb7d0ba
 
ac07e15
 
 
3155132
ac07e15
 
 
 
 
 
 
 
 
 
 
d5db6e5
ac07e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155132
ac07e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import argparse
from pathlib import Path
import os
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning


def list_sub(a, b):
    return [e for e in a if e not in b]


def is_repo_name(s):
    import re
    return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)


def download_thing(directory, url, civitai_api_key=""):
    url = url.strip()
    if "drive.google.com" in url:
        original_dir = os.getcwd()
        os.chdir(directory)
        os.system(f"gdown --fuzzy {url}")
        os.chdir(original_dir)
    elif "huggingface.co" in url:
        url = url.replace("?download=true", "")
        if "/blob/" in url:
            url = url.replace("/blob/", "/resolve/")
            os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
        else:
            os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
    elif "civitai.com" in url:
        if "?" in url:
            url = url.split("?")[0]
        if civitai_api_key:
            url = url + f"?token={civitai_api_key}"
            os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
        else:
            print("You need an API key to download Civitai models.")
    else:
        os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")


def get_local_model_list(dir_path):
    model_list = []
    valid_extensions = ('.safetensors')
    for file in Path(dir_path).glob("*"):
        if file.suffix in valid_extensions:
            file_path = str(Path(f"{dir_path}/{file.name}"))
            model_list.append(file_path)
    return model_list


def get_download_file(temp_dir, url, civitai_key):
    if not "http" in url and is_repo_name(url) and not Path(url).exists():
        print(f"Use HF Repo: {url}")
        new_file = url
    elif not "http" in url and Path(url).exists():
        print(f"Use local file: {url}")
        new_file = url
    elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
        print(f"File to download alreday exists: {url}")
        new_file = f"{temp_dir}/{url.split('/')[-1]}"
    else:
        print(f"Start downloading: {url}")
        before = get_local_model_list(temp_dir)
        try:
            download_thing(temp_dir, url.strip(), civitai_key)
        except Exception:
            print(f"Download failed: {url}")
            return ""
        after = get_local_model_list(temp_dir)
        new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
    if not new_file:
        print(f"Download failed: {url}")
        return ""
    print(f"Download completed: {url}")
    return new_file


from diffusers import (
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
    KDPM2DiscreteScheduler,
    EulerDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    HeunDiscreteScheduler,
    LMSDiscreteScheduler,
    DDIMScheduler,
    DEISMultistepScheduler,
    UniPCMultistepScheduler,
    LCMScheduler,
    PNDMScheduler,
    KDPM2AncestralDiscreteScheduler,
    DPMSolverSDEScheduler,
    EDMDPMSolverMultistepScheduler,
    DDPMScheduler,
    EDMEulerScheduler,
    TCDScheduler,
)


SCHEDULER_CONFIG_MAP = {
    "DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
    "DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
    "DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
    "DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
    "DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
    "DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
    "DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
    "DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
    "DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
    "DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
    "DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
    "DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
    "DPM2": (KDPM2DiscreteScheduler, {}),
    "DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
    "DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
    "DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
    "Euler": (EulerDiscreteScheduler, {}),
    "Euler a": (EulerAncestralDiscreteScheduler, {}),
    "Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
    "Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
    "Heun": (HeunDiscreteScheduler, {}),
    "Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
    "LMS": (LMSDiscreteScheduler, {}),
    "LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
    "DDIM": (DDIMScheduler, {}),
    "DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
    "DEIS": (DEISMultistepScheduler, {}),
    "UniPC": (UniPCMultistepScheduler, {}),
    "UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
    "PNDM": (PNDMScheduler, {}),
    "Euler EDM": (EDMEulerScheduler, {}),
    "Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
    "DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
    "DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
    "DDPM": (DDPMScheduler, {}),

    "DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
    "DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
    "DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
    "DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),

    "LCM": (LCMScheduler, {}),
    "TCD": (TCDScheduler, {}),
    "LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
    "TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
    "LCM Auto-Loader": (LCMScheduler, {}),
    "TCD Auto-Loader": (TCDScheduler, {}),
}


def get_scheduler_config(name):
    if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
    return SCHEDULER_CONFIG_MAP[name]


def save_readme_md(dir, url):
    orig_url = ""
    orig_name = ""
    if is_repo_name(url): 
        orig_name = url
        orig_url = f"https://huggingface.co/{url}/"
    elif "http" in url:
        orig_name = url
        orig_url = url
    if orig_name and orig_url:
       md = f"""---

license: other

language:

- en

library_name: diffusers

pipeline_tag: text-to-image

tags:

- text-to-image

---

Converted from [{orig_name}]({orig_url}).

"""
    else:
        md = f"""---

license: other

language:

- en

library_name: diffusers

pipeline_tag: text-to-image

tags:

- text-to-image

---

"""
    path = str(Path(dir, "README.md"))
    with open(path, mode='w', encoding="utf-8") as f:
        f.write(md)


def fuse_loras(pipe, civitai_key="", lora_dict={}, temp_dir="."):
    if not lora_dict or not isinstance(lora_dict, dict): return pipe
    a_list = []
    w_list = []
    for k, v in lora_dict.items():
        if not k: continue
        new_lora_file = get_download_file(temp_dir, k, civitai_key)
        if not new_lora_file or not Path(new_lora_file).exists():
            print(f"LoRA not found: {k}")
            continue
        w_name = Path(new_lora_file).name
        a_name = Path(new_lora_file).stem
        pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
        a_list.append(a_name)
        w_list.append(v)
    if not a_list: return
    pipe.set_adapters(a_list, adapter_weights=w_list)
    pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
    pipe.unload_lora_weights()
    return pipe


def convert_url_to_diffusers_sdxl(url, civitai_key="", half=True, vae=None, scheduler="Euler a", lora_dict={}):
    temp_dir = "."
    new_file = get_download_file(temp_dir, url, civitai_key)
    if not new_file:
        print(f"Not found: {url}")
        return
    new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #

    pipe = None
    if is_repo_name(url):
        if half:
            pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, torch_dtype=torch.float16)
        else:
            pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True)
    else:
        if half:
            pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, torch_dtype=torch.float16)
        else:
            pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True)

    new_vae_file = ""
    if vae:
        if is_repo_name(vae):
            if half:
                pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
            else:
                pipe.vae = AutoencoderKL.from_pretrained(vae)
        else:
            new_vae_file = get_download_file(temp_dir, vae, civitai_key)
            if new_vae_file and half:
                pipe.vae = AutoencoderKL.from_single_file(new_vae_file, torch_dtype=torch.float16)
            elif new_vae_file:
                pipe.vae = AutoencoderKL.from_single_file(new_vae_file)

    pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key)

    sconf = get_scheduler_config(scheduler)
    pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])

    if half:
        pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
    else:
        pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)

    if Path(new_repo_name).exists():
        save_readme_md(new_repo_name, url)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
    parser.add_argument("--half", default=True, help="Save weights in half precision.")
    parser.add_argument("--scheduler", default="Euler a", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
    parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
    parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
    parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
    parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
    parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
    parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
    parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
    parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
    parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
    parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
    parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
    parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
    parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")

    args = parser.parse_args()
    assert args.url is not None, "Must provide a URL!"

    lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}

    if args.loras and Path(args.loras).exists():
        for p in Path(args.loras).glob('**/*.safetensors'):
            lora_dict[str(p)] = 1.0

    convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict)


# Usage: python convert_url_to_diffusers_sdxl.py --url https://huggingface.co/bluepen5805/anima_pencil-XL/blob/main/anima_pencil-XL-v5.0.0.safetensors
# python convert_url_to_diffusers_sdxl.py --url https://huggingface.co/bluepen5805/anima_pencil-XL/blob/main/anima_pencil-XL-v5.0.0.safetensors --scheduler "Euler a"
# python convert_url_to_diffusers_sdxl.py --url https://huggingface.co/bluepen5805/anima_pencil-XL/blob/main/anima_pencil-XL-v5.0.0.safetensors --loras ./loras