Spaces:
Running
Running
File size: 15,909 Bytes
f575d14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import argparse
from pathlib import Path
import os
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
import gradio as gr
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
def list_sub(a, b):
return [e for e in a if e not in b]
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/\.,\s]+?/[^/\.,\s]+?$', s)
def download_thing(directory, url, civitai_api_key=""):
url = url.strip()
if "drive.google.com" in url:
original_dir = os.getcwd()
os.chdir(directory)
os.system(f"gdown --fuzzy {url}")
os.chdir(original_dir)
elif "huggingface.co" in url:
url = url.replace("?download=true", "")
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/")
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
else:
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
elif "civitai.com" in url:
if "?" in url:
url = url.split("?")[0]
if civitai_api_key:
url = url + f"?token={civitai_api_key}"
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
else:
print("You need an API key to download Civitai models.")
else:
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
def get_local_model_list(dir_path):
model_list = []
valid_extensions = ('.safetensors')
for file in Path(dir_path).glob("*"):
if file.suffix in valid_extensions:
file_path = str(Path(f"{dir_path}/{file.name}"))
model_list.append(file_path)
return model_list
def get_download_file(temp_dir, url, civitai_key):
if not "http" in url and is_repo_name(url) and not Path(url).exists():
print(f"Use HF Repo: {url}")
new_file = url
elif not "http" in url and Path(url).exists():
print(f"Use local file: {url}")
new_file = url
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
print(f"File to download alreday exists: {url}")
new_file = f"{temp_dir}/{url.split('/')[-1]}"
else:
print(f"Start downloading: {url}")
before = get_local_model_list(temp_dir)
try:
download_thing(temp_dir, url.strip(), civitai_key)
except Exception:
print(f"Download failed: {url}")
return ""
after = get_local_model_list(temp_dir)
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
if not new_file:
print(f"Download failed: {url}")
return ""
print(f"Download completed: {url}")
return new_file
from diffusers import (
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
DDIMScheduler,
DEISMultistepScheduler,
UniPCMultistepScheduler,
LCMScheduler,
PNDMScheduler,
KDPM2AncestralDiscreteScheduler,
DPMSolverSDEScheduler,
EDMDPMSolverMultistepScheduler,
DDPMScheduler,
EDMEulerScheduler,
TCDScheduler,
)
SCHEDULER_CONFIG_MAP = {
"DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
"DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
"DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
"DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
"DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
"DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
"DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
"DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
"DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
"DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
"DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
"DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
"DPM2": (KDPM2DiscreteScheduler, {}),
"DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
"DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
"DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
"Euler": (EulerDiscreteScheduler, {}),
"Euler a": (EulerAncestralDiscreteScheduler, {}),
"Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
"Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
"Heun": (HeunDiscreteScheduler, {}),
"Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
"LMS": (LMSDiscreteScheduler, {}),
"LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
"DDIM": (DDIMScheduler, {}),
"DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
"DEIS": (DEISMultistepScheduler, {}),
"UniPC": (UniPCMultistepScheduler, {}),
"UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
"PNDM": (PNDMScheduler, {}),
"Euler EDM": (EDMEulerScheduler, {}),
"Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
"DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
"DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
"DDPM": (DDPMScheduler, {}),
"DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
"DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
"DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
"DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
"LCM": (LCMScheduler, {}),
"TCD": (TCDScheduler, {}),
"LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
"TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
"LCM Auto-Loader": (LCMScheduler, {}),
"TCD Auto-Loader": (TCDScheduler, {}),
}
def get_scheduler_config(name):
if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
return SCHEDULER_CONFIG_MAP[name]
def save_readme_md(dir, url):
orig_url = ""
orig_name = ""
if is_repo_name(url):
orig_name = url
orig_url = f"https://huggingface.co/{url}/"
elif "http" in url:
orig_name = url
orig_url = url
if orig_name and orig_url:
md = f"""---
license: other
tags:
- text-to-image
---
Converted from [{orig_name}]({orig_url}).
"""
else:
md = f"""---
license: other
tags:
- text-to-image
---
"""
path = str(Path(dir, "README.md"))
with open(path, mode='w', encoding="utf-8") as f:
f.write(md)
def fuse_loras(pipe, lora_dict={}, temp_dir=".", civitai_key=""):
if not lora_dict: return
a_list = []
w_list = []
for k, v in lora_dict.items():
new_lora_file = get_download_file(temp_dir, k, civitai_key)
if not new_lora_file or not Path(new_lora_file).exists():
print(f"LoRA not found: {k}")
continue
w_name = Path(new_lora_file).name
a_name = Path(new_lora_file).stem
pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
a_list.append(a_name)
w_list.append(v)
pipe.set_adapters(a_list, adapter_weights=w_list)
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
pipe.unload_lora_weights()
def convert_url_to_diffusers_sdxl(url, civitai_key="", half=True, vae=None, scheduler="Euler a", lora_dict={}, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Start converting...")
temp_dir = "."
new_file = get_download_file(temp_dir, url, civitai_key)
if not new_file:
print(f"Not found: {url}")
return ""
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
pipe = None
if is_repo_name(new_file):
if half:
pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, torch_dtype=torch.float16)
else:
pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True)
else:
if half:
pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, torch_dtype=torch.float16)
else:
pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True)
new_vae_file = ""
if vae:
if is_repo_name(vae):
if half:
pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
else:
pipe.vae = AutoencoderKL.from_pretrained(vae)
else:
new_vae_file = get_download_file(temp_dir, vae, civitai_key)
if new_vae_file and half:
pipe.vae = AutoencoderKL.from_single_file(new_vae_file, torch_dtype=torch.float16)
elif new_vae_file:
pipe.vae = AutoencoderKL.from_single_file(new_vae_file)
fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
sconf = get_scheduler_config(scheduler)
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
if half:
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
else:
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
if Path(new_repo_name).exists():
save_readme_md(new_repo_name, url)
progress(1, desc="Converted.")
return new_repo_name
def is_repo_exists(repo_id):
from huggingface_hub import HfApi
api = HfApi()
try:
if api.repo_exists(repo_id=repo_id): return True
else: return False
except Exception as e:
print(f"Error: Failed to connect {repo_id}. ")
return True # for safe
def create_diffusers_repo(new_repo_id, diffusers_folder, progress=gr.Progress(track_tqdm=True)):
from huggingface_hub import HfApi
import os
hf_token = os.environ.get("HF_TOKEN")
api = HfApi()
try:
progress(0, desc="Start uploading...")
api.create_repo(repo_id=new_repo_id, token=hf_token)
for path in Path(diffusers_folder).glob("*"):
if path.is_dir():
api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
elif path.is_file():
api.upload_file(repo_id=new_repo_id, path_or_fileobj=str(path), path_in_repo=path.name, token=hf_token)
progress(1, desc="Uploaded.")
url = f"https://huggingface.co/{new_repo_id}"
except Exception as e:
print(f"Error: Failed to upload to {new_repo_id}. ")
return ""
return url
def convert_url_to_diffusers_repo(dl_url, new_repo_id, hf_token, civitai_key="", repo_urls=[], half=True, vae=None,
scheduler="Euler a", lora1=None, lora1s=1.0, lora2=None, lora2s=1.0, lora3=None, lora3s=1.0,
lora4=None, lora4s=1.0, lora5=None, lora5s=1.0, progress=gr.Progress(track_tqdm=True)):
if hf_token and not os.environ.get("HF_TOKEN"): os.environ['HF_TOKEN'] = hf_token
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY")
if not is_repo_name(new_repo_id):
print(f"Invalid repo name: {new_repo_id}")
progress(1, desc=f"Invalid repo name: {new_repo_id}")
return ""
if is_repo_exists(new_repo_id):
print(f"Repo already exists: {new_repo_id}")
progress(1, desc=f"Repo already exists: {new_repo_id}")
return ""
lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
if None in lora_dict.keys(): del lora_dict[None]
new_path = convert_url_to_diffusers_sdxl(dl_url, civitai_key, half, vae, scheduler, lora_dict)
if not new_path: return ""
repo_url = create_diffusers_repo(new_repo_id, new_path)
if not repo_urls: repo_urls = []
repo_urls.append(repo_url)
md = "Your new repo:<br>"
for u in repo_urls:
md += f"[{str(u).split('/')[-2]}{str(u).split('/')[-1]}]({str(u)})<br>"
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
parser.add_argument("--half", default=True, help="Save weights in half precision.")
parser.add_argument("--scheduler", default=None, type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
args = parser.parse_args()
assert args.url is not None, "Must provide a URL!"
lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
if None in lora_dict.keys(): del lora_dict[None]
if args.loras and Path(args.loras).exists():
for p in Path(args.loras).glob('**/*.safetensors'):
lora_dict[str(p)] = 1.0
convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict)
|