File size: 6,598 Bytes
7cf64e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
from sdutils import get_dtypes, SCHEDULER_CONFIG_MAP
import gradio as gr
DEFAULT_DTYPE = get_dtypes()[0]
schedulers = list(SCHEDULER_CONFIG_MAP.keys())
clips = [
"",
"openai/clip-vit-large-patch14",
]
t5s = [
"",
"https://huggingface.co/camenduru/FLUX.1-dev/blob/main/t5xxl_fp8_e4m3fn.safetensors",
]
sdxl_vaes = [
"",
"https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl.vae.safetensors",
"https://huggingface.co/nubby/blessed-sdxl-vae-fp16-fix/blob/main/sdxl_vae-fp16fix-blessed.safetensors",
"https://huggingface.co/John6666/safetensors_converting_test/blob/main/xlVAEC_e7.safetensors",
"https://huggingface.co/John6666/safetensors_converting_test/blob/main/xlVAEC_f1.safetensors",
]
sdxl_loras = [
"",
"https://huggingface.co/SPO-Diffusion-Models/SPO-SDXL_4k-p_10ep_LoRA/blob/main/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors",
"https://huggingface.co/wangfuyun/PCM_Weights/blob/main/sdxl/pcm_sdxl_smallcfg_2step_converted.safetensors",
"https://huggingface.co/wangfuyun/PCM_Weights/blob/main/sdxl/pcm_sdxl_smallcfg_4step_converted.safetensors",
"https://huggingface.co/wangfuyun/PCM_Weights/blob/main/sdxl/pcm_sdxl_smallcfg_8step_converted.safetensors",
"https://huggingface.co/wangfuyun/PCM_Weights/blob/main/sdxl/pcm_sdxl_normalcfg_8step_converted.safetensors",
"https://huggingface.co/wangfuyun/PCM_Weights/blob/main/sdxl/pcm_sdxl_normalcfg_16step_converted.safetensors",
"https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-1step-lora.safetensors",
"https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-2steps-lora.safetensors",
"https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-4steps-lora.safetensors",
"https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-8steps-CFG-lora.safetensors",
"https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-12steps-CFG-lora.safetensors",
"https://huggingface.co/latent-consistency/lcm-lora-sdxl/blob/main/pytorch_lora_weights.safetensors",
]
sdxl_preset_items = ["dtype", "vae", "scheduler", "lora1", "lora1s", "lora2", "lora2s", "lora3", "lora3s", "lora4", "lora4s", "lora5", "lora5s"]
sdxl_preset_dict = {
"Default": [DEFAULT_DTYPE, "", "Euler a", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0],
"Bake in standard VAE": [DEFAULT_DTYPE, "https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl.vae.safetensors",
"Euler a", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0],
"Hyper-SDXL / SPO": [DEFAULT_DTYPE, "https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl.vae.safetensors",
"TCD", "https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-8steps-CFG-lora.safetensors", 1.0,
"https://huggingface.co/SPO-Diffusion-Models/SPO-SDXL_4k-p_10ep_LoRA/blob/main/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors",
1.0, "", 1.0, "", 1.0, "", 1.0],
}
def sdxl_set_presets(preset: str="Default"):
p = []
if preset in sdxl_preset_dict.keys(): p = sdxl_preset_dict[preset]
else: p = sdxl_preset_dict["Default"]
if len(p) != len(sdxl_preset_items): raise gr.Error("Invalid preset.")
print("Setting SDXL preset:", ", ".join([f"{x}:{y}" for x, y in zip(sdxl_preset_items, p)]))
return p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12]
sd15_vaes = [
"",
"https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt",
"https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt",
]
sd15_loras = [
"",
"https://huggingface.co/SPO-Diffusion-Models/SPO-SD-v1-5_4k-p_10ep_LoRA/blob/main/spo-sd-v1-5_4k-p_10ep_lora_diffusers.safetensors",
]
sd15_preset_items = ["dtype", "vae", "scheduler", "lora1", "lora1s", "lora2", "lora2s", "lora3", "lora3s", "lora4", "lora4s", "lora5", "lora5s", "ema"]
sd15_preset_dict = {
"Default": [DEFAULT_DTYPE, "", "Euler", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0, True],
"Bake in standard VAE": [DEFAULT_DTYPE, "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt",
"Euler", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0, True],
}
def sd15_set_presets(preset: str="Default"):
p = []
if preset in sd15_preset_dict.keys(): p = sd15_preset_dict[preset]
else: p = sd15_preset_dict["Default"]
if len(p) != len(sd15_preset_items): raise gr.Error("Invalid preset.")
print("Setting SD1.5 preset:", ", ".join([f"{x}:{y}" for x, y in zip(sd15_preset_items, p)]))
return p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13]
flux_vaes = [
"",
]
flux_loras = [
"",
]
flux_preset_items = ["dtype", "vae", "scheduler", "lora1", "lora1s", "lora2", "lora2s", "lora3", "lora3s", "lora4", "lora4s", "lora5", "lora5s", "base_repo"]
flux_preset_dict = {
"dev": ["bf16", "", "", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0, "camenduru/FLUX.1-dev-diffusers"],
"schnell": ["bf16", "", "", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0, "black-forest-labs/FLUX.1-schnell"],
}
def flux_set_presets(preset: str="dev"):
p = []
if preset in flux_preset_dict.keys(): p = flux_preset_dict[preset]
else: p = flux_preset_dict["dev"]
if len(p) != len(flux_preset_items): raise gr.Error("Invalid preset.")
print("Setting FLUX.1 preset:", ", ".join([f"{x}:{y}" for x, y in zip(flux_preset_items, p)]))
return p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13]
sd35_vaes = [
"",
]
sd35_loras = [
"",
]
sd35_preset_items = ["dtype", "vae", "scheduler", "lora1", "lora1s", "lora2", "lora2s", "lora3", "lora3s", "lora4", "lora4s", "lora5", "lora5s", "base_repo"]
sd35_preset_dict = {
"Default": ["bf16", "", "", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0, "adamo1139/stable-diffusion-3.5-large-ungated"],
}
def sd35_set_presets(preset: str="dev"):
p = []
if preset in sd35_preset_dict.keys(): p = sd35_preset_dict[preset]
else: p = sd35_preset_dict["Default"]
if len(p) != len(sd35_preset_items): raise gr.Error("Invalid preset.")
print("Setting SD3.5 preset:", ", ".join([f"{x}:{y}" for x, y in zip(sd35_preset_items, p)]))
return p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13]
|