Spaces:
Runtime error
Runtime error
File size: 20,210 Bytes
3c411d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import os
if os.environ.get("SPACES_ZERO_GPU") is not None:
import spaces
else:
class spaces:
@staticmethod
def GPU(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
import gradio as gr
from huggingface_hub import InferenceClient
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM, LlavaForConditionalGeneration
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import torchvision.transforms.functional as TVF
import gc
from peft import PeftConfig
from typing import Union
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
BASE_DIR = Path(__file__).resolve().parent # Define the base directory
device = "cuda" if torch.cuda.is_available() else "cpu"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
use_inference_client = False
PIXTRAL_PATHS = ["SeanScripts/pixtral-12b-nf4", "mistral-community/pixtral-12b"]
llm_models = {
"Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2": None,
PIXTRAL_PATHS[0]: None,
"bunnycore/LLama-3.1-8B-Matrix": None,
"Sao10K/Llama-3.1-8B-Stheno-v3.4": None,
"unsloth/Meta-Llama-3.1-8B-bnb-4bit": None,
"DevQuasar/HermesNova-Llama-3.1-8B": None,
"mergekit-community/L3.1-Boshima-b-FIX": None,
"meta-llama/Meta-Llama-3.1-8B": None, # gated
}
CLIP_PATH = "google/siglip-so400m-patch14-384"
MODEL_PATH = list(llm_models.keys())[0]
CHECKPOINT_PATH = BASE_DIR / Path("9em124t2-499968")
LORA_PATH = CHECKPOINT_PATH / "text_model"
TITLE = "<h1><center>JoyCaption Alpha One (2024-09-20a)</center></h1>"
CAPTION_TYPE_MAP = {
("descriptive", "formal", False, False): ["Write a descriptive caption for this image in a formal tone."],
("descriptive", "formal", False, True): ["Write a descriptive caption for this image in a formal tone within {word_count} words."],
("descriptive", "formal", True, False): ["Write a {length} descriptive caption for this image in a formal tone."],
("descriptive", "informal", False, False): ["Write a descriptive caption for this image in a casual tone."],
("descriptive", "informal", False, True): ["Write a descriptive caption for this image in a casual tone within {word_count} words."],
("descriptive", "informal", True, False): ["Write a {length} descriptive caption for this image in a casual tone."],
("training_prompt", "formal", False, False): ["Write a stable diffusion prompt for this image."],
("training_prompt", "formal", False, True): ["Write a stable diffusion prompt for this image within {word_count} words."],
("training_prompt", "formal", True, False): ["Write a {length} stable diffusion prompt for this image."],
("rng-tags", "formal", False, False): ["Write a list of Booru tags for this image."],
("rng-tags", "formal", False, True): ["Write a list of Booru tags for this image within {word_count} words."],
("rng-tags", "formal", True, False): ["Write a {length} list of Booru tags for this image."],
}
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
super().__init__()
self.deep_extract = deep_extract
if self.deep_extract:
input_features = input_features * 5
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
# Mode token
#self.mode_token = nn.Embedding(n_modes, output_features)
#self.mode_token.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
def forward(self, vision_outputs: torch.Tensor):
if self.deep_extract:
x = torch.concat((
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
), dim=-1)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
else:
x = vision_outputs[-2]
x = self.ln1(x)
if self.pos_emb is not None:
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
x = x + self.pos_emb
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
# Mode token
#mode_token = self.mode_token(mode)
#assert mode_token.shape == (x.shape[0], mode_token.shape[1], x.shape[2]), f"Expected {(x.shape[0], 1, x.shape[2])}, got {mode_token.shape}"
#x = torch.cat((x, mode_token), dim=1)
# <|image_start|>, IMAGE, <|image_end|>
other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
# https://huggingface.co/docs/transformers/v4.44.2/gguf
# https://github.com/city96/ComfyUI-GGUF/issues/7
# https://github.com/THUDM/ChatGLM-6B/issues/18
# https://github.com/meta-llama/llama/issues/394
# https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/discussions/109
# https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
# https://huggingface.co/google/flan-ul2/discussions/8
# https://huggingface.co/blog/4bit-transformers-bitsandbytes
# https://huggingface.co/docs/transformers/main/en/peft
# https://huggingface.co/docs/transformers/main/en/peft#enable-and-disable-adapters
# https://huggingface.co/docs/transformers/main/quantization/bitsandbytes?bnb=4-bit
# https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4
tokenizer = None
text_model_client = None
text_model = None
image_adapter = None
peft_config = None
pixtral_model = None
pixtral_processor = None
def load_text_model(model_name: str=MODEL_PATH, gguf_file: Union[str, None]=None, is_nf4: bool=True):
global tokenizer, text_model, image_adapter, peft_config, pixtral_model, pixtral_processor, text_model_client, use_inference_client
try:
tokenizer = None
text_model_client = None
text_model = None
image_adapter = None
peft_config = None
pixtral_model = None
pixtral_processor = None
torch.cuda.empty_cache()
gc.collect()
from transformers import BitsAndBytesConfig
nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
if model_name in PIXTRAL_PATHS: # Pixtral
print(f"Loading LLM: {model_name}")
if is_nf4:
pixtral_model = LlavaForConditionalGeneration.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
else:
pixtral_model = LlavaForConditionalGeneration.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
pixtral_processor = AutoProcessor.from_pretrained(model_name)
print(f"pixtral_model: {type(pixtral_model)}") #
print(f"pixtral_processor: {type(pixtral_processor)}") #
return
print("Loading tokenizer")
if gguf_file: tokenizer = AutoTokenizer.from_pretrained(model_name, gguf_file=gguf_file, use_fast=True, legacy=False)
else: tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, legacy=False)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
print(f"Loading LLM: {model_name}")
if gguf_file:
if device == "cpu":
text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval()
elif is_nf4:
text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
else:
text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
else:
if device == "cpu":
text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval()
elif is_nf4:
text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
else:
text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
if LORA_PATH.exists():
print("Loading VLM's custom text model")
if is_nf4: peft_config = PeftConfig.from_pretrained(LORA_PATH, device_map=device, quantization_config=nf4_config)
else: peft_config = PeftConfig.from_pretrained(LORA_PATH, device_map=device)
text_model.add_adapter(peft_config)
text_model.enable_adapters()
print("Loading image adapter")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False).eval().to("cpu")
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
image_adapter.eval().to(device)
except Exception as e:
print(f"LLM load error: {e}")
raise Exception(f"LLM load error: {e}") from e
finally:
torch.cuda.empty_cache()
gc.collect()
load_text_model.zerogpu = True
# Load CLIP
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
if (CHECKPOINT_PATH / "clip_model.pt").exists():
print("Loading VLM's custom vision model")
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu', weights_only=True)
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
clip_model.load_state_dict(checkpoint)
del checkpoint
clip_model.eval().requires_grad_(False).to(device)
# Tokenizer
# LLM
# Image Adapter
#load_text_model(PIXTRAL_PATHS[0])
#print(f"pixtral_model: {type(pixtral_model)}") #
#print(f"pixtral_processor: {type(pixtral_processor)}") #
load_text_model()
print(f"pixtral_model: {type(pixtral_model)}") #
print(f"pixtral_processor: {type(pixtral_processor)}") #
@spaces.GPU()
@torch.inference_mode()
def stream_chat_mod(input_image: Image.Image, caption_type: str, caption_tone: str, caption_length: Union[str, int],
max_new_tokens: int=300, top_p: float=0.9, temperature: float=0.6, model_name: str=MODEL_PATH, progress=gr.Progress(track_tqdm=True)) -> str:
global tokenizer, text_model, image_adapter, peft_config, pixtral_model, pixtral_processor, text_model_client, use_inference_client
torch.cuda.empty_cache()
gc.collect()
# 'any' means no length specified
length = None if caption_length == "any" else caption_length
if isinstance(length, str):
try:
length = int(length)
except ValueError:
pass
# 'rng-tags' and 'training_prompt' don't have formal/informal tones
if caption_type == "rng-tags" or caption_type == "training_prompt":
caption_tone = "formal"
# Build prompt
prompt_key = (caption_type, caption_tone, isinstance(length, str), isinstance(length, int))
if prompt_key not in CAPTION_TYPE_MAP:
raise ValueError(f"Invalid caption type: {prompt_key}")
prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(length=length, word_count=length)
print(f"Prompt: {prompt_str}")
# Pixtral
if model_name in PIXTRAL_PATHS:
print(f"pixtral_model: {type(pixtral_model)}") #
print(f"pixtral_processor: {type(pixtral_processor)}") #
input_images = [input_image.convert("RGB")]
#input_prompt = f"[INST]{prompt_str}\n[IMG][/INST]"
input_prompt = "[INST]Caption this image:\n[IMG][/INST]"
inputs = pixtral_processor(images=input_images, text=input_prompt, return_tensors="pt").to(device)
generate_ids = pixtral_model.generate(**inputs, max_new_tokens=max_new_tokens)
output = pixtral_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return output.strip()
# Preprocess image
image = input_image.resize((384, 384), Image.LANCZOS)
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
pixel_values = pixel_values.to(device)
# Tokenize the prompt
prompt = tokenizer.encode(prompt_str, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
# Embed image
with torch.amp.autocast_mode.autocast(device, enabled=True):
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
image_features = vision_outputs.hidden_states
embedded_images = image_adapter(image_features)
embedded_images = embedded_images.to(device)
# Embed prompt
prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
eot_embed = image_adapter.get_eot_embedding().unsqueeze(0).to(dtype=text_model.dtype)
# Construct prompts
inputs_embeds = torch.cat([
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images.to(dtype=embedded_bos.dtype),
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
eot_embed.expand(embedded_images.shape[0], -1, -1),
], dim=1)
input_ids = torch.cat([
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
prompt,
torch.tensor([[tokenizer.convert_tokens_to_ids("<|eot_id|>")]], dtype=torch.long),
], dim=1).to(device)
attention_mask = torch.ones_like(input_ids)
text_model.to(device)
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=max_new_tokens,
do_sample=True, suppress_tokens=None, top_p=top_p, temperature=temperature)
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
generate_ids = generate_ids[:, :-1]
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
return caption.strip()
# https://huggingface.co/docs/transformers/v4.44.2/main_classes/text_generation#transformers.FlaxGenerationMixin.generate
# https://github.com/huggingface/transformers/issues/6535
# https://zenn.dev/hijikix/articles/8c445f4373fdcc ja
# https://github.com/ggerganov/llama.cpp/discussions/7712
# https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility
# https://huggingface.co/docs/huggingface_hub/v0.24.6/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
def is_repo_exists(repo_id):
from huggingface_hub import HfApi
try:
api = HfApi(token=HF_TOKEN)
if api.repo_exists(repo_id=repo_id): return True
else: return False
except Exception as e:
print(f"Error: Failed to connect {repo_id}.")
print(e)
return True # for safe
def is_valid_repo(repo_id):
from huggingface_hub import HfApi
import re
try:
if not re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', repo_id): return False
api = HfApi()
if api.repo_exists(repo_id=repo_id): return True
else: return False
except Exception as e:
print(f"Failed to connect {repo_id}. {e}")
return False
def get_text_model():
return list(llm_models.keys())
def is_gguf_repo(repo_id: str):
from huggingface_hub import HfApi
try:
api = HfApi(token=HF_TOKEN)
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return False
files = api.list_repo_files(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
gr.Warning(f"Error: Failed to get {repo_id}'s info.")
return False
files = [f for f in files if f.endswith(".gguf")]
if len(files) == 0: return False
else: return True
def get_repo_gguf(repo_id: str):
from huggingface_hub import HfApi
try:
api = HfApi(token=HF_TOKEN)
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[])
files = api.list_repo_files(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
gr.Warning(f"Error: Failed to get {repo_id}'s info.")
return gr.update(value="", choices=[])
files = [f for f in files if f.endswith(".gguf")]
if len(files) == 0: return gr.update(value="", choices=[])
else: return gr.update(value=files[0], choices=files)
@spaces.GPU()
def change_text_model(model_name: str=MODEL_PATH, use_client: bool=False, gguf_file: Union[str, None]=None,
is_nf4: bool=True, progress=gr.Progress(track_tqdm=True)):
global use_inference_client, llm_models
use_inference_client = use_client
try:
if not is_repo_name(model_name) or not is_repo_exists(model_name):
raise gr.Error(f"Repo doesn't exist: {model_name}")
if not gguf_file and is_gguf_repo(model_name):
gr.Info(f"Please select a gguf file.")
return gr.update(visible=True)
if use_inference_client:
pass #
else:
load_text_model(model_name, gguf_file, is_nf4)
if model_name not in llm_models: llm_models[model_name] = gguf_file if gguf_file else None
return gr.update(choices=get_text_model())
except Exception as e:
raise gr.Error(f"Model load error: {model_name}, {e}")
|