File size: 20,210 Bytes
3c411d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import os
if os.environ.get("SPACES_ZERO_GPU") is not None:
    import spaces
else:
    class spaces:
        @staticmethod
        def GPU(func):
            def wrapper(*args, **kwargs):
                return func(*args, **kwargs)
            return wrapper
import gradio as gr
from huggingface_hub import InferenceClient
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM, LlavaForConditionalGeneration
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import torchvision.transforms.functional as TVF
import gc
from peft import PeftConfig
from typing import Union

import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

BASE_DIR = Path(__file__).resolve().parent # Define the base directory
device = "cuda" if torch.cuda.is_available() else "cpu"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
use_inference_client = False
PIXTRAL_PATHS = ["SeanScripts/pixtral-12b-nf4", "mistral-community/pixtral-12b"]

llm_models = {
    "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2": None,
    PIXTRAL_PATHS[0]: None,
    "bunnycore/LLama-3.1-8B-Matrix": None,
    "Sao10K/Llama-3.1-8B-Stheno-v3.4": None,
    "unsloth/Meta-Llama-3.1-8B-bnb-4bit": None,
    "DevQuasar/HermesNova-Llama-3.1-8B": None,
    "mergekit-community/L3.1-Boshima-b-FIX": None,
    "meta-llama/Meta-Llama-3.1-8B": None, # gated
}

CLIP_PATH = "google/siglip-so400m-patch14-384"
MODEL_PATH = list(llm_models.keys())[0]
CHECKPOINT_PATH = BASE_DIR / Path("9em124t2-499968")
LORA_PATH = CHECKPOINT_PATH / "text_model"
TITLE = "<h1><center>JoyCaption Alpha One (2024-09-20a)</center></h1>"
CAPTION_TYPE_MAP = {
    ("descriptive", "formal", False, False): ["Write a descriptive caption for this image in a formal tone."],
    ("descriptive", "formal", False, True): ["Write a descriptive caption for this image in a formal tone within {word_count} words."],
    ("descriptive", "formal", True, False): ["Write a {length} descriptive caption for this image in a formal tone."],
    ("descriptive", "informal", False, False): ["Write a descriptive caption for this image in a casual tone."],
    ("descriptive", "informal", False, True): ["Write a descriptive caption for this image in a casual tone within {word_count} words."],
    ("descriptive", "informal", True, False): ["Write a {length} descriptive caption for this image in a casual tone."],

    ("training_prompt", "formal", False, False): ["Write a stable diffusion prompt for this image."],
    ("training_prompt", "formal", False, True): ["Write a stable diffusion prompt for this image within {word_count} words."],
    ("training_prompt", "formal", True, False): ["Write a {length} stable diffusion prompt for this image."],

    ("rng-tags", "formal", False, False): ["Write a list of Booru tags for this image."],
    ("rng-tags", "formal", False, True): ["Write a list of Booru tags for this image within {word_count} words."],
    ("rng-tags", "formal", True, False): ["Write a {length} list of Booru tags for this image."],
}

class ImageAdapter(nn.Module):
    def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
        super().__init__()
        self.deep_extract = deep_extract

        if self.deep_extract:
            input_features = input_features * 5

        self.linear1 = nn.Linear(input_features, output_features)
        self.activation = nn.GELU()
        self.linear2 = nn.Linear(output_features, output_features)
        self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
        self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))

        # Mode token
        #self.mode_token = nn.Embedding(n_modes, output_features)
        #self.mode_token.weight.data.normal_(mean=0.0, std=0.02)   # Matches HF's implementation of llama3

        # Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
        self.other_tokens = nn.Embedding(3, output_features)
        self.other_tokens.weight.data.normal_(mean=0.0, std=0.02)   # Matches HF's implementation of llama3

    def forward(self, vision_outputs: torch.Tensor):
        if self.deep_extract:
            x = torch.concat((
                vision_outputs[-2],
                vision_outputs[3],
                vision_outputs[7],
                vision_outputs[13],
                vision_outputs[20],
            ), dim=-1)
            assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}"  # batch, tokens, features
            assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
        else:
            x = vision_outputs[-2]

        x = self.ln1(x)

        if self.pos_emb is not None:
            assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
            x = x + self.pos_emb

        x = self.linear1(x)
        x = self.activation(x)
        x = self.linear2(x)

        # Mode token
        #mode_token = self.mode_token(mode)
        #assert mode_token.shape == (x.shape[0], mode_token.shape[1], x.shape[2]), f"Expected {(x.shape[0], 1, x.shape[2])}, got {mode_token.shape}"
        #x = torch.cat((x, mode_token), dim=1)

        # <|image_start|>, IMAGE, <|image_end|>
        other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
        assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
        x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)

        return x

    def get_eot_embedding(self):
        return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)

# https://huggingface.co/docs/transformers/v4.44.2/gguf
# https://github.com/city96/ComfyUI-GGUF/issues/7
# https://github.com/THUDM/ChatGLM-6B/issues/18
# https://github.com/meta-llama/llama/issues/394
# https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/discussions/109
# https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
# https://huggingface.co/google/flan-ul2/discussions/8
# https://huggingface.co/blog/4bit-transformers-bitsandbytes
# https://huggingface.co/docs/transformers/main/en/peft
# https://huggingface.co/docs/transformers/main/en/peft#enable-and-disable-adapters
# https://huggingface.co/docs/transformers/main/quantization/bitsandbytes?bnb=4-bit
# https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4
tokenizer = None
text_model_client = None
text_model = None
image_adapter = None
peft_config = None
pixtral_model = None
pixtral_processor = None
def load_text_model(model_name: str=MODEL_PATH, gguf_file: Union[str, None]=None, is_nf4: bool=True):
    global tokenizer, text_model, image_adapter, peft_config, pixtral_model, pixtral_processor, text_model_client, use_inference_client
    try:
        tokenizer = None
        text_model_client = None
        text_model = None
        image_adapter = None
        peft_config = None
        pixtral_model = None
        pixtral_processor = None
        torch.cuda.empty_cache()
        gc.collect()

        from transformers import BitsAndBytesConfig
        nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4",
                                        bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
        
        if model_name in PIXTRAL_PATHS: # Pixtral
            print(f"Loading LLM: {model_name}")
            if is_nf4:
                pixtral_model = LlavaForConditionalGeneration.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
            else:
                pixtral_model = LlavaForConditionalGeneration.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
            pixtral_processor = AutoProcessor.from_pretrained(model_name)
            print(f"pixtral_model: {type(pixtral_model)}") #
            print(f"pixtral_processor: {type(pixtral_processor)}") #
            return

        print("Loading tokenizer")
        if gguf_file: tokenizer = AutoTokenizer.from_pretrained(model_name, gguf_file=gguf_file, use_fast=True, legacy=False)
        else: tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, legacy=False)
        assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
 
        print(f"Loading LLM: {model_name}")
        if gguf_file:
            if device == "cpu":
                text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval()
            elif is_nf4:
                text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
            else:
                text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
        else:
            if device == "cpu":
                text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval()
            elif is_nf4:
                text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
            else:
                text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()

        if LORA_PATH.exists():
            print("Loading VLM's custom text model")
            if is_nf4: peft_config = PeftConfig.from_pretrained(LORA_PATH, device_map=device, quantization_config=nf4_config)
            else: peft_config = PeftConfig.from_pretrained(LORA_PATH, device_map=device)
            text_model.add_adapter(peft_config)
            text_model.enable_adapters()

        print("Loading image adapter")
        image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False).eval().to("cpu")
        image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
        image_adapter.eval().to(device)
    except Exception as e:
        print(f"LLM load error: {e}")
        raise Exception(f"LLM load error: {e}") from e
    finally:
        torch.cuda.empty_cache()
        gc.collect()

load_text_model.zerogpu = True

# Load CLIP
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
if (CHECKPOINT_PATH / "clip_model.pt").exists():
    print("Loading VLM's custom vision model")
    checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu', weights_only=True)
    checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
    clip_model.load_state_dict(checkpoint)
    del checkpoint
clip_model.eval().requires_grad_(False).to(device)

# Tokenizer
# LLM
# Image Adapter
#load_text_model(PIXTRAL_PATHS[0])
#print(f"pixtral_model: {type(pixtral_model)}") #
#print(f"pixtral_processor: {type(pixtral_processor)}") #
load_text_model()
print(f"pixtral_model: {type(pixtral_model)}") #
print(f"pixtral_processor: {type(pixtral_processor)}") #

@spaces.GPU()
@torch.inference_mode()
def stream_chat_mod(input_image: Image.Image, caption_type: str, caption_tone: str, caption_length: Union[str, int],

                    max_new_tokens: int=300, top_p: float=0.9, temperature: float=0.6, model_name: str=MODEL_PATH, progress=gr.Progress(track_tqdm=True)) -> str:
    global tokenizer, text_model, image_adapter, peft_config, pixtral_model, pixtral_processor, text_model_client, use_inference_client
    torch.cuda.empty_cache()
    gc.collect()

    # 'any' means no length specified
    length = None if caption_length == "any" else caption_length

    if isinstance(length, str):
        try:
            length = int(length)
        except ValueError:
            pass

    # 'rng-tags' and 'training_prompt' don't have formal/informal tones
    if caption_type == "rng-tags" or caption_type == "training_prompt":
        caption_tone = "formal"

    # Build prompt
    prompt_key = (caption_type, caption_tone, isinstance(length, str), isinstance(length, int))
    if prompt_key not in CAPTION_TYPE_MAP:
        raise ValueError(f"Invalid caption type: {prompt_key}")

    prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(length=length, word_count=length)
    print(f"Prompt: {prompt_str}")

    # Pixtral
    if model_name in PIXTRAL_PATHS:
        print(f"pixtral_model: {type(pixtral_model)}") #
        print(f"pixtral_processor: {type(pixtral_processor)}") #
        input_images = [input_image.convert("RGB")]
        #input_prompt = f"[INST]{prompt_str}\n[IMG][/INST]"
        input_prompt = "[INST]Caption this image:\n[IMG][/INST]"
        inputs = pixtral_processor(images=input_images, text=input_prompt, return_tensors="pt").to(device)
        generate_ids = pixtral_model.generate(**inputs, max_new_tokens=max_new_tokens)
        output = pixtral_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        return output.strip()

    # Preprocess image
    image = input_image.resize((384, 384), Image.LANCZOS)
    pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
    pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
    pixel_values = pixel_values.to(device)

    # Tokenize the prompt
    prompt = tokenizer.encode(prompt_str, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)

    # Embed image
    with torch.amp.autocast_mode.autocast(device, enabled=True):
        vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
        image_features = vision_outputs.hidden_states
        embedded_images = image_adapter(image_features)
        embedded_images = embedded_images.to(device)
    
    # Embed prompt
    prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
    assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
    embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
    eot_embed = image_adapter.get_eot_embedding().unsqueeze(0).to(dtype=text_model.dtype)

    # Construct prompts
    inputs_embeds = torch.cat([
        embedded_bos.expand(embedded_images.shape[0], -1, -1),
        embedded_images.to(dtype=embedded_bos.dtype),
        prompt_embeds.expand(embedded_images.shape[0], -1, -1),
        eot_embed.expand(embedded_images.shape[0], -1, -1),
    ], dim=1)

    input_ids = torch.cat([
        torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
        torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
        prompt,
        torch.tensor([[tokenizer.convert_tokens_to_ids("<|eot_id|>")]], dtype=torch.long),
    ], dim=1).to(device)
    attention_mask = torch.ones_like(input_ids)

    text_model.to(device)
    generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=max_new_tokens,
                                       do_sample=True, suppress_tokens=None, top_p=top_p, temperature=temperature)

    # Trim off the prompt
    generate_ids = generate_ids[:, input_ids.shape[1]:]
    if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
        generate_ids = generate_ids[:, :-1]

    caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]

    return caption.strip()


# https://huggingface.co/docs/transformers/v4.44.2/main_classes/text_generation#transformers.FlaxGenerationMixin.generate
# https://github.com/huggingface/transformers/issues/6535
# https://zenn.dev/hijikix/articles/8c445f4373fdcc ja
# https://github.com/ggerganov/llama.cpp/discussions/7712
# https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility
# https://huggingface.co/docs/huggingface_hub/v0.24.6/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation


def is_repo_name(s):
    import re
    return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)


def is_repo_exists(repo_id):
    from huggingface_hub import HfApi
    try:
        api = HfApi(token=HF_TOKEN)
        if api.repo_exists(repo_id=repo_id): return True
        else: return False
    except Exception as e:
        print(f"Error: Failed to connect {repo_id}.")
        print(e)
        return True # for safe


def is_valid_repo(repo_id):
    from huggingface_hub import HfApi
    import re
    try:
        if not re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', repo_id): return False
        api = HfApi()
        if api.repo_exists(repo_id=repo_id): return True
        else: return False
    except Exception as e:
        print(f"Failed to connect {repo_id}. {e}")
        return False


def get_text_model():
    return list(llm_models.keys())


def is_gguf_repo(repo_id: str):
    from huggingface_hub import HfApi
    try:
        api = HfApi(token=HF_TOKEN)
        if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return False
        files = api.list_repo_files(repo_id=repo_id)
    except Exception as e:
        print(f"Error: Failed to get {repo_id}'s info.")
        print(e)
        gr.Warning(f"Error: Failed to get {repo_id}'s info.")
        return False
    files = [f for f in files if f.endswith(".gguf")]
    if len(files) == 0: return False
    else: return True


def get_repo_gguf(repo_id: str):
    from huggingface_hub import HfApi
    try:
        api = HfApi(token=HF_TOKEN)
        if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[])
        files = api.list_repo_files(repo_id=repo_id)
    except Exception as e:
        print(f"Error: Failed to get {repo_id}'s info.")
        print(e)
        gr.Warning(f"Error: Failed to get {repo_id}'s info.")
        return gr.update(value="", choices=[])
    files = [f for f in files if f.endswith(".gguf")]
    if len(files) == 0: return gr.update(value="", choices=[])
    else: return gr.update(value=files[0], choices=files)


@spaces.GPU()
def change_text_model(model_name: str=MODEL_PATH, use_client: bool=False, gguf_file: Union[str, None]=None,

                      is_nf4: bool=True, progress=gr.Progress(track_tqdm=True)):
    global use_inference_client, llm_models
    use_inference_client = use_client
    try:
        if not is_repo_name(model_name) or not is_repo_exists(model_name):
            raise gr.Error(f"Repo doesn't exist: {model_name}")
        if not gguf_file and is_gguf_repo(model_name):
            gr.Info(f"Please select a gguf file.")
            return gr.update(visible=True)
        if use_inference_client:
            pass #
        else:
            load_text_model(model_name, gguf_file, is_nf4)
        if model_name not in llm_models: llm_models[model_name] = gguf_file if gguf_file else None
        return gr.update(choices=get_text_model())
    except Exception as e:
        raise gr.Error(f"Model load error: {model_name}, {e}")