Spaces:
Running
on
Zero
Running
on
Zero
File size: 58,498 Bytes
25e2f7f d34ac72 c9302f4 4c19db8 c9302f4 4c19db8 f55d446 d34ac72 f55d446 de8ac53 f3a071e c9302f4 f55d446 4c19db8 cd39c08 a03d34d cd39c08 f55d446 4c19db8 5e404f6 5302530 f3a071e 4c19db8 c9302f4 f0c3651 5302530 4c19db8 2e4c5d9 4c19db8 5302530 c9302f4 4c19db8 c9302f4 036cfdd 5302530 c9302f4 4c19db8 c9302f4 4c19db8 5302530 4c19db8 5302530 4641302 2e4c5d9 4641302 c9302f4 5302530 8ac6201 4c19db8 5302530 4c19db8 5302530 650af8f c9302f4 5302530 8ac6201 4c19db8 5302530 d0d2198 5e404f6 5302530 d34ac72 f55d446 d34ac72 f55d446 f0ac7fb f55d446 d34ac72 f55d446 d34ac72 036cfdd f55d446 036cfdd d0d2198 4c19db8 36dc6e9 d0d2198 f0c3651 4c19db8 f3a071e 4c19db8 f0c3651 4c19db8 f0c3651 f55d446 4c19db8 f0c3651 f3a071e 4c19db8 36dc6e9 4c19db8 f0c3651 f55d446 4c19db8 d0d2198 4c19db8 d34ac72 c9302f4 036cfdd f55d446 036cfdd c9302f4 2e4c5d9 c9302f4 f55d446 c9302f4 2e4c5d9 c9302f4 f55d446 c9302f4 f55d446 09fa6ac b397bfd fd8a02a d34ac72 f55d446 4c19db8 f55d446 4c19db8 f55d446 c9302f4 4c19db8 f55d446 4c19db8 f55d446 4c19db8 f55d446 cd39c08 f55d446 c9302f4 f55d446 cd39c08 f55d446 c9302f4 f55d446 d34ac72 f55d446 d0d2198 c9302f4 f55d446 c9302f4 f55d446 c9302f4 d34ac72 f55d446 de8ac53 f55d446 de8ac53 f55d446 de8ac53 f55d446 de8ac53 f55d446 d34ac72 bf56799 d34ac72 f55d446 de8ac53 f55d446 de8ac53 5e404f6 f55d446 f3a071e d34ac72 bf56799 cd39c08 f55d446 cd39c08 f55d446 cd39c08 8ac6201 cd39c08 4c19db8 b8d4104 cd39c08 f55d446 cd39c08 f0ac7fb cd39c08 f55d446 cd39c08 de8ac53 f55d446 f0ac7fb 4c19db8 a138792 a03d34d 4c19db8 cd39c08 c9302f4 461e46a c9302f4 cd39c08 4c19db8 cd39c08 c9302f4 de8ac53 f55d446 de8ac53 c533c6b 82bcda0 c533c6b ad37494 c533c6b de8ac53 35b1cf8 f55d446 cd39c08 de8ac53 35b1cf8 de8ac53 c533c6b 82bcda0 35b1cf8 cd39c08 de8ac53 36dc6e9 f1d6334 d0d2198 f1d6334 c533c6b 4c19db8 c533c6b f3a071e d34ac72 f55d446 d34ac72 f55d446 de8ac53 f55d446 de8ac53 f55d446 de8ac53 f55d446 de8ac53 d34ac72 db65c96 c9302f4 d0d2198 5e404f6 d0d2198 e3b569b db65c96 d34ac72 f55d446 4c19db8 d0d2198 d34ac72 c9302f4 5e404f6 c9302f4 d0d2198 d34ac72 cd39c08 35b1cf8 cd39c08 35b1cf8 cd39c08 d0d2198 635b226 cd39c08 635b226 cd39c08 f0c3651 f1d6334 d0d2198 635b226 a03d34d cd39c08 a03d34d cd39c08 5404b87 cd39c08 5404b87 cd39c08 5404b87 cd39c08 5404b87 cd39c08 5404b87 cd39c08 5404b87 cd39c08 5404b87 cd39c08 f3a071e cd39c08 f3a071e cd39c08 f3a071e 455cf48 f3a071e 455cf48 f3a071e 455cf48 f3a071e d34ac72 f55d446 f3a071e 594ea93 0ec40c7 594ea93 d34ac72 d6802e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 |
import spaces
import gradio as gr
import json
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel, FluxControlNetImg2ImgPipeline
from huggingface_hub import HfFileSystem, ModelCard
import os
import copy
import random
import time
import requests
import pandas as pd
from env import models, num_loras, num_cns
from mod import (clear_cache, get_repo_safetensors, is_repo_name, is_repo_exists, get_model_trigger,
description_ui, compose_lora_json, is_valid_lora, fuse_loras, save_image, preprocess_i2i_image,
get_trigger_word, enhance_prompt, set_control_union_image,
get_control_union_mode, set_control_union_mode, get_control_params, translate_to_en)
from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json,
download_my_lora, get_all_lora_tupled_list, apply_lora_prompt,
update_loras, get_t2i_model_info)
from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
from tagger.fl2flux import predict_tags_fl2_flux
#Load prompts for randomization
df = pd.read_csv('prompts.csv', header=None)
prompt_values = df.values.flatten()
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
base_model = models[0]
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
#controlnet_model_union_repo = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro'
dtype = torch.bfloat16
#dtype = torch.float8_e4m3fn
#device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model, vae=good_vae, transformer=pipe.transformer, text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype)
controlnet_union = None
controlnet = None
last_model = models[0]
last_cn_on = False
#controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
#controlnet = FluxMultiControlNetModel([controlnet_union])
#controlnet.config = controlnet_union.config
MAX_SEED = 2**32-1
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
# https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux
#@spaces.GPU()
def change_base_model(repo_id: str, cn_on: bool, disable_model_cache: bool, progress=gr.Progress(track_tqdm=True)):
global pipe, pipe_i2i, taef1, good_vae, controlnet_union, controlnet, last_model, last_cn_on, dtype
try:
if not disable_model_cache and (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
pipe.to("cpu")
pipe_i2i.to("cpu")
good_vae.to("cpu")
taef1.to("cpu")
if controlnet is not None: controlnet.to("cpu")
if controlnet_union is not None: controlnet_union.to("cpu")
clear_cache()
if cn_on:
progress(0, desc=f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
print(f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
controlnet = FluxMultiControlNetModel([controlnet_union])
controlnet.config = controlnet_union.config
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
pipe_i2i = FluxControlNetImg2ImgPipeline.from_pretrained(repo_id, controlnet=controlnet, vae=None, transformer=pipe.transformer, text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype)
last_model = repo_id
last_cn_on = cn_on
progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
print(f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
else:
progress(0, desc=f"Loading model: {repo_id}")
print(f"Loading model: {repo_id}")
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(repo_id, vae=None, transformer=pipe.transformer, text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype)
last_model = repo_id
last_cn_on = cn_on
progress(1, desc=f"Model loaded: {repo_id}")
print(f"Model loaded: {repo_id}")
except Exception as e:
print(f"Model load Error: {e}")
raise gr.Error(f"Model load Error: {e}") from e
return gr.update(visible=True)
change_base_model.zerogpu = True
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def download_file(url, directory=None):
if directory is None:
directory = os.getcwd() # Use current working directory if not specified
# Get the filename from the URL
filename = url.split('/')[-1]
# Full path for the downloaded file
filepath = os.path.join(directory, filename)
# Download the file
response = requests.get(url)
response.raise_for_status() # Raise an exception for bad status codes
# Write the content to the file
with open(filepath, 'wb') as file:
file.write(response.content)
return filepath
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
selected_index = evt.index
selected_indices = selected_indices or []
if selected_index in selected_indices:
selected_indices.remove(selected_index)
else:
if len(selected_indices) < 2:
selected_indices.append(selected_index)
else:
gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")
return gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), width, height, gr.update(), gr.update()
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_image_1 = None
lora_image_2 = None
if len(selected_indices) >= 1:
lora1 = loras_state[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras_state[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
lora_image_2 = lora2['image']
if selected_indices:
last_selected_lora = loras_state[selected_indices[-1]]
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
else:
new_placeholder = "Type a prompt"
return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2
def remove_lora_1(selected_indices, loras_state):
if len(selected_indices) >= 1:
selected_indices.pop(0)
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_image_1 = None
lora_image_2 = None
if len(selected_indices) >= 1:
lora1 = loras_state[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras_state[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
lora_image_2 = lora2['image']
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
def remove_lora_2(selected_indices, loras_state):
if len(selected_indices) >= 2:
selected_indices.pop(1)
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_image_1 = None
lora_image_2 = None
if len(selected_indices) >= 1:
lora1 = loras_state[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras_state[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
lora_image_2 = lora2['image']
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
def randomize_loras(selected_indices, loras_state):
if len(loras_state) < 2:
raise gr.Error("Not enough LoRAs to randomize.")
selected_indices = random.sample(range(len(loras_state)), 2)
lora1 = loras_state[selected_indices[0]]
lora2 = loras_state[selected_indices[1]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_image_1 = lora1['image']
lora_image_2 = lora2['image']
random_prompt = random.choice(prompt_values)
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, random_prompt
def add_custom_lora(custom_lora, selected_indices, current_loras):
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None)
if existing_item_index is None:
if repo.endswith(".safetensors") and repo.startswith("http"):
repo = download_file(repo)
new_item = {
"image": image if image else "/home/user/app/custom.png",
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(f"New LoRA: {new_item}")
existing_item_index = len(current_loras)
current_loras.append(new_item)
# Update gallery
gallery_items = [(item["image"], item["title"]) for item in current_loras]
# Update selected_indices if there's room
if len(selected_indices) < 2:
selected_indices.append(existing_item_index)
else:
gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")
# Update selected_info and images
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_image_1 = None
lora_image_2 = None
if len(selected_indices) >= 1:
lora1 = current_loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨"
lora_image_1 = lora1['image'] if lora1['image'] else None
if len(selected_indices) >= 2:
lora2 = current_loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨"
lora_image_2 = lora2['image'] if lora2['image'] else None
print("Finished adding custom LoRA")
return (
current_loras,
gr.update(value=gallery_items),
selected_info_1,
selected_info_2,
selected_indices,
lora_scale_1,
lora_scale_2,
lora_image_1,
lora_image_2
)
except Exception as e:
print(e)
gr.Warning(str(e))
return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()
else:
return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()
def remove_custom_lora(selected_indices, current_loras):
if current_loras:
custom_lora_repo = current_loras[-1]['repo']
# Remove from loras list
current_loras = current_loras[:-1]
# Remove from selected_indices if selected
custom_lora_index = len(current_loras)
if custom_lora_index in selected_indices:
selected_indices.remove(custom_lora_index)
# Update gallery
gallery_items = [(item["image"], item["title"]) for item in current_loras]
# Update selected_info and images
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_image_1 = None
lora_image_2 = None
if len(selected_indices) >= 1:
lora1 = current_loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = current_loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
lora_image_2 = lora2['image']
return (
current_loras,
gr.update(value=gallery_items),
selected_info_1,
selected_info_2,
selected_indices,
lora_scale_1,
lora_scale_2,
lora_image_1,
lora_image_2
)
@spaces.GPU(duration=70)
@torch.inference_mode()
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, cn_on, progress=gr.Progress(track_tqdm=True)):
global pipe, taef1, good_vae, controlnet, controlnet_union
try:
good_vae.to("cuda")
taef1.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(int(float(seed)))
with calculateDuration("Generating image"):
# Generate image
modes, images, scales = get_control_params()
if not cn_on or len(modes) == 0:
pipe.to("cuda")
pipe.vae = taef1
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
progress(0, desc="Start Inference.")
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
output_type="pil",
good_vae=good_vae,
):
yield img
else:
pipe.to("cuda")
pipe.vae = good_vae
if controlnet_union is not None: controlnet_union.to("cuda")
if controlnet is not None: controlnet.to("cuda")
pipe.enable_model_cpu_offload()
progress(0, desc="Start Inference with ControlNet.")
for img in pipe(
prompt=prompt_mash,
control_image=images,
control_mode=modes,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
controlnet_conditioning_scale=scales,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
).images:
yield img
except Exception as e:
print(e)
raise gr.Error(f"Inference Error: {e}") from e
@spaces.GPU(duration=70)
@torch.inference_mode()
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed, cn_on, progress=gr.Progress(track_tqdm=True)):
global pipe_i2i, good_vae, controlnet, controlnet_union
try:
good_vae.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(int(float(seed)))
image_input = load_image(image_input_path)
with calculateDuration("Generating image"):
# Generate image
modes, images, scales = get_control_params()
if not cn_on or len(modes) == 0:
pipe_i2i.to("cuda")
pipe_i2i.vae = good_vae
image_input = load_image(image_input_path)
progress(0, desc="Start I2I Inference.")
final_image = pipe_i2i(
prompt=prompt_mash,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
output_type="pil",
).images[0]
return final_image
else:
pipe_i2i.to("cuda")
pipe_i2i.vae = good_vae
image_input = load_image(image_input_path)
if controlnet_union is not None: controlnet_union.to("cuda")
if controlnet is not None: controlnet.to("cuda")
pipe_i2i.enable_model_cpu_offload()
progress(0, desc="Start I2I Inference with ControlNet.")
final_image = pipe_i2i(
prompt=prompt_mash,
control_image=images,
control_mode=modes,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
controlnet_conditioning_scale=scales,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
output_type="pil",
).images[0]
return final_image
except Exception as e:
print(e)
raise gr.Error(f"I2I Inference Error: {e}") from e
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2,
randomize_seed, seed, width, height, loras_state,
lora_json, cn_on, translate_on, progress=gr.Progress(track_tqdm=True)):
global pipe, pipe_i2i
if not selected_indices and not is_valid_lora(lora_json):
gr.Info("LoRA isn't selected.")
# raise gr.Error("You must select a LoRA before proceeding.")
progress(0, desc="Preparing Inference.")
selected_loras = [loras_state[idx] for idx in selected_indices]
if translate_on: prompt = translate_to_en(prompt)
# Build the prompt with trigger words
prepends = []
appends = []
for lora in selected_loras:
trigger_word = lora.get('trigger_word', '')
if trigger_word:
if lora.get("trigger_position") == "prepend":
prepends.append(trigger_word)
else:
appends.append(trigger_word)
prompt_mash = " ".join(prepends + [prompt] + appends)
print("Prompt Mash: ", prompt_mash) #
# Unload previous LoRA weights
with calculateDuration("Unloading LoRA"):
try:
#pipe.unfuse_lora()
pipe.unload_lora_weights()
#pipe_i2i.unfuse_lora()
pipe_i2i.unload_lora_weights()
except Exception as e:
print(e)
print(pipe.get_active_adapters()) #
print(pipe_i2i.get_active_adapters()) #
clear_cache() #
# Build the prompt for External LoRAs
prompt_mash = prompt_mash + get_model_trigger(last_model)
lora_names = []
lora_weights = []
if is_valid_lora(lora_json): # Load External LoRA weights
with calculateDuration("Loading External LoRA weights"):
if image_input is not None: lora_names, lora_weights = fuse_loras(pipe_i2i, lora_json)
else: lora_names, lora_weights = fuse_loras(pipe, lora_json)
trigger_word = get_trigger_word(lora_json)
prompt_mash = f"{prompt_mash} {trigger_word}"
print("Prompt Mash: ", prompt_mash) #
# Load LoRA weights with respective scales
with calculateDuration("Loading LoRA weights"):
for idx, lora in enumerate(selected_loras):
lora_name = f"lora_{idx}"
lora_names.append(lora_name)
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2)
lora_path = lora['repo']
weight_name = lora.get("weights")
print(f"Lora Path: {lora_path}")
if image_input is not None:
if weight_name:
pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name)
else:
pipe_i2i.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
else:
if weight_name:
pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name)
else:
pipe.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
print("Loaded LoRAs:", lora_names)
if image_input is not None:
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
else:
pipe.set_adapters(lora_names, adapter_weights=lora_weights)
print(pipe.get_active_adapters()) #
print(pipe_i2i.get_active_adapters()) #
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Generate image
progress(0, desc="Running Inference.")
if(image_input is not None):
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed, cn_on)
yield save_image(final_image, None, last_model, prompt_mash, height, width, steps, cfg_scale, seed), seed, gr.update(visible=False)
else:
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, cn_on)
# Consume the generator to get the final image
final_image = None
step_counter = 0
for image in image_generator:
step_counter+=1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True)
yield save_image(final_image, None, last_model, prompt_mash, height, width, steps, cfg_scale, seed), seed, gr.update(value=progress_bar, visible=False)
run_lora.zerogpu = True
def get_huggingface_safetensors(link):
split_link = link.split("/")
if len(split_link) == 2:
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(f"Base model: {base_model}")
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
raise Exception("Not a FLUX LoRA!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
safetensors_name = None
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if file.endswith(".safetensors"):
safetensors_name = file.split("/")[-1]
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA")
if not safetensors_name:
raise gr.Error("No *.safetensors file found in the repository")
return split_link[1], link, safetensors_name, trigger_word, image_url
else:
raise gr.Error("Invalid Hugging Face repository link")
def check_custom_model(link):
if link.endswith(".safetensors"):
# Treat as direct link to the LoRA weights
title = os.path.basename(link)
repo = link
path = None # No specific weight name
trigger_word = ""
image_url = None
return title, repo, path, trigger_word, image_url
elif link.startswith("https://"):
if "huggingface.co" in link:
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
raise Exception("Unsupported URL")
else:
# Assume it's a Hugging Face model path
return get_huggingface_safetensors(link)
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.25em}
#gallery .grid-wrap{height: 5vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.custom_lora_card{margin-bottom: 1em}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
.button_total{height: 100%}
#loaded_loras [data-testid="block-info"]{font-size:80%}
#custom_lora_structure{background: var(--block-background-fill)}
#custom_lora_btn{margin-top: auto;margin-bottom: 11px}
#random_btn{font-size: 300%}
.info {text-align:center; !important}
'''
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_cache=(60, 3600)) as app:
with gr.Tab("FLUX LoRA the Explorer"):
title = gr.HTML(
"""<h1><img src="https://huggingface.co/spaces/John6666/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA">FLUX LoRA the Explorer Mod</h1>""",
elem_id="title",
)
loras_state = gr.State(loras)
selected_indices = gr.State([])
with gr.Row():
with gr.Column(scale=3):
with gr.Group():
with gr.Accordion("Generate Prompt from Image", open=False):
tagger_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
with gr.Accordion(label="Advanced options", open=False):
tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False)
v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2, visible=False)
v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2, visible=False)
v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False, visible=False)
tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-Flux"], label="Algorithms", value=["Use WD Tagger"])
tagger_generate_from_image = gr.Button(value="Generate Prompt from Image")
prompt = gr.Textbox(label="Prompt", lines=1, max_lines=8, placeholder="Type a prompt", show_copy_button=True)
with gr.Row():
prompt_enhance = gr.Button(value="Enhance your prompt", variant="secondary")
auto_trans = gr.Checkbox(label="Auto translate to English", value=False, elem_classes="info")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn", elem_classes=["button_total"])
with gr.Row(elem_id="loaded_loras"):
with gr.Column(scale=1, min_width=25):
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_1 = gr.Markdown("Select a LoRA 1")
with gr.Column(scale=5, min_width=50):
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
with gr.Row():
remove_button_1 = gr.Button("Remove", size="sm")
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_2 = gr.Markdown("Select a LoRA 2")
with gr.Column(scale=5, min_width=50):
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
with gr.Row():
remove_button_2 = gr.Button("Remove", size="sm")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=5,
elem_id="gallery"
)
with gr.Group():
with gr.Row(elem_id="custom_lora_structure"):
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux", scale=3, min_width=150)
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress",visible=False)
result = gr.Image(label="Generated Image", format="png", show_share_button=False)
with gr.Group():
model_name = gr.Dropdown(label="Base Model", info="You can enter a huggingface model repo_id to want to use.", choices=models, value=models[0], allow_custom_value=True)
model_info = gr.Markdown(elem_classes="info")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
input_image = gr.Image(label="Input image", type="filepath", height=256, sources=["upload", "clipboard"], show_share_button=False)
with gr.Column():
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
input_image_preprocess = gr.Checkbox(True, label="Preprocess Input image")
with gr.Column():
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
disable_model_cache = gr.Checkbox(False, label="Disable model caching")
with gr.Accordion("External LoRA", open=True):
with gr.Column():
deselect_lora_button = gr.Button("Remove External LoRAs", variant="secondary")
lora_repo_json = gr.JSON(value=[{}] * num_loras, visible=False)
lora_repo = [None] * num_loras
lora_weights = [None] * num_loras
lora_trigger = [None] * num_loras
lora_wt = [None] * num_loras
lora_info = [None] * num_loras
lora_copy = [None] * num_loras
lora_md = [None] * num_loras
lora_num = [None] * num_loras
with gr.Row():
for i in range(num_loras):
with gr.Column():
lora_repo[i] = gr.Dropdown(label=f"LoRA {int(i+1)} Repo", choices=get_all_lora_tupled_list(), info="Input LoRA Repo ID", value="", allow_custom_value=True)
with gr.Row():
lora_weights[i] = gr.Dropdown(label=f"LoRA {int(i+1)} Filename", choices=[], info="Optional", value="", allow_custom_value=True)
lora_trigger[i] = gr.Textbox(label=f"LoRA {int(i+1)} Trigger Prompt", lines=1, max_lines=4, value="")
lora_wt[i] = gr.Slider(label=f"LoRA {int(i+1)} Scale", minimum=-3, maximum=3, step=0.01, value=1.00)
with gr.Row():
lora_info[i] = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
lora_copy[i] = gr.Button(value="Copy example to prompt", visible=False)
lora_md[i] = gr.Markdown(value="", visible=False)
lora_num[i] = gr.Number(i, visible=False)
with gr.Accordion("From URL", open=True, visible=True):
with gr.Row():
lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=["Flux.1 D", "Flux.1 S"], value=["Flux.1 D"])
lora_search_civitai_sort = gr.Radio(label="Sort", choices=["Highest Rated", "Most Downloaded", "Newest"], value="Most Downloaded")
lora_search_civitai_period = gr.Radio(label="Period", choices=["AllTime", "Year", "Month", "Week", "Day"], value="Month")
with gr.Row():
lora_search_civitai_query = gr.Textbox(label="Query", placeholder="flux", lines=1)
lora_search_civitai_tag = gr.Textbox(label="Tag", lines=1)
lora_search_civitai_submit = gr.Button("Search on Civitai")
with gr.Row():
lora_search_civitai_json = gr.JSON(value={}, visible=False)
lora_search_civitai_desc = gr.Markdown(value="", visible=False)
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
lora_download_url = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
with gr.Row():
lora_download = [None] * num_loras
for i in range(num_loras):
lora_download[i] = gr.Button(f"Get and set LoRA to {int(i+1)}")
with gr.Accordion("ControlNet (extremely slow)", open=True, visible=True):
with gr.Column():
cn_on = gr.Checkbox(False, label="Use ControlNet")
cn_mode = [None] * num_cns
cn_scale = [None] * num_cns
cn_image = [None] * num_cns
cn_image_ref = [None] * num_cns
cn_res = [None] * num_cns
cn_num = [None] * num_cns
with gr.Row():
for i in range(num_cns):
with gr.Column():
cn_mode[i] = gr.Radio(label=f"ControlNet {int(i+1)} Mode", choices=get_control_union_mode(), value=get_control_union_mode()[0])
with gr.Row():
cn_scale[i] = gr.Slider(label=f"ControlNet {int(i+1)} Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.75)
cn_res[i] = gr.Slider(label=f"ControlNet {int(i+1)} Preprocess resolution", minimum=128, maximum=512, value=384, step=1)
cn_num[i] = gr.Number(i, visible=False)
with gr.Row():
cn_image_ref[i] = gr.Image(label="Image Reference", type="pil", format="png", height=256, sources=["upload", "clipboard"], show_share_button=False)
cn_image[i] = gr.Image(label="Control Image", type="pil", format="png", height=256, show_share_button=False, interactive=False)
gallery.select(
update_selection,
inputs=[selected_indices, loras_state, width, height],
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2])
remove_button_1.click(
remove_lora_1,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
)
remove_button_2.click(
remove_lora_2,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
)
randomize_button.click(
randomize_loras,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, prompt]
)
add_custom_lora_button.click(
add_custom_lora,
inputs=[custom_lora, selected_indices, loras_state],
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
)
remove_custom_lora_button.click(
remove_custom_lora,
inputs=[selected_indices, loras_state],
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=change_base_model,
inputs=[model_name, cn_on, disable_model_cache],
outputs=[result],
queue=True,
show_api=False,
trigger_mode="once",
).success(
fn=run_lora,
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2,
randomize_seed, seed, width, height, loras_state, lora_repo_json, cn_on, auto_trans],
outputs=[result, seed, progress_bar],
queue=True,
show_api=True,
)
input_image.upload(preprocess_i2i_image, [input_image, input_image_preprocess, height, width], [input_image], queue=False, show_api=False)
gr.on(
triggers=[model_name.change, cn_on.change],
fn=get_t2i_model_info,
inputs=[model_name],
outputs=[model_info],
queue=False,
show_api=False,
trigger_mode="once",
).then(change_base_model, [model_name, cn_on, disable_model_cache], [result], queue=True, show_api=False)
prompt_enhance.click(enhance_prompt, [prompt], [prompt], queue=False, show_api=False)
gr.on(
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit, lora_search_civitai_tag.submit],
fn=search_civitai_lora,
inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag],
outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query],
scroll_to_output=True,
queue=True,
show_api=False,
)
lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
for i, l in enumerate(lora_repo):
deselect_lora_button.click(lambda: ("", 1.0), None, [lora_repo[i], lora_wt[i]], queue=False, show_api=False)
gr.on(
triggers=[lora_download[i].click],
fn=download_my_lora,
inputs=[lora_download_url, lora_repo[i]],
outputs=[lora_repo[i]],
scroll_to_output=True,
queue=True,
show_api=False,
)
gr.on(
triggers=[lora_repo[i].change, lora_wt[i].change],
fn=update_loras,
inputs=[prompt, lora_repo[i], lora_wt[i]],
outputs=[prompt, lora_repo[i], lora_wt[i], lora_info[i], lora_md[i]],
queue=False,
trigger_mode="once",
show_api=False,
).success(get_repo_safetensors, [lora_repo[i]], [lora_weights[i]], queue=False, show_api=False
).success(apply_lora_prompt, [lora_info[i]], [lora_trigger[i]], queue=False, show_api=False
).success(compose_lora_json, [lora_repo_json, lora_num[i], lora_repo[i], lora_wt[i], lora_weights[i], lora_trigger[i]], [lora_repo_json], queue=False, show_api=False)
for i, m in enumerate(cn_mode):
gr.on(
triggers=[cn_mode[i].change, cn_scale[i].change],
fn=set_control_union_mode,
inputs=[cn_num[i], cn_mode[i], cn_scale[i]],
outputs=[cn_on],
queue=True,
show_api=False,
).success(set_control_union_image, [cn_num[i], cn_mode[i], cn_image_ref[i], height, width, cn_res[i]], [cn_image[i]], queue=False, show_api=False)
cn_image_ref[i].upload(set_control_union_image, [cn_num[i], cn_mode[i], cn_image_ref[i], height, width, cn_res[i]], [cn_image[i]], queue=False, show_api=False)
tagger_generate_from_image.click(lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
).success(
predict_tags_wd,
[tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
[v2_series, v2_character, prompt, v2_copy],
show_api=False,
).success(predict_tags_fl2_flux, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)
with gr.Tab("FLUX Prompt Generator"):
from prompt import (PromptGenerator, HuggingFaceInferenceNode, florence_caption,
ARTFORM, PHOTO_TYPE, ROLES, HAIRSTYLES, LIGHTING, COMPOSITION, POSE, BACKGROUND,
PHOTOGRAPHY_STYLES, DEVICE, PHOTOGRAPHER, ARTIST, DIGITAL_ARTFORM, PLACE,
FEMALE_DEFAULT_TAGS, MALE_DEFAULT_TAGS, FEMALE_BODY_TYPES, MALE_BODY_TYPES,
FEMALE_CLOTHING, MALE_CLOTHING, FEMALE_ADDITIONAL_DETAILS, MALE_ADDITIONAL_DETAILS, pg_title)
prompt_generator = PromptGenerator()
huggingface_node = HuggingFaceInferenceNode()
gr.HTML(pg_title)
with gr.Row():
with gr.Column(scale=2):
with gr.Accordion("Basic Settings"):
pg_custom = gr.Textbox(label="Custom Input Prompt (optional)")
pg_subject = gr.Textbox(label="Subject (optional)")
pg_gender = gr.Radio(["female", "male"], label="Gender", value="female")
# Add the radio button for global option selection
pg_global_option = gr.Radio(
["Disabled", "Random", "No Figure Rand"],
label="Set all options to:",
value="Disabled"
)
with gr.Accordion("Artform and Photo Type", open=False):
pg_artform = gr.Dropdown(["disabled", "random"] + ARTFORM, label="Artform", value="disabled")
pg_photo_type = gr.Dropdown(["disabled", "random"] + PHOTO_TYPE, label="Photo Type", value="disabled")
with gr.Accordion("Character Details", open=False):
pg_body_types = gr.Dropdown(["disabled", "random"] + FEMALE_BODY_TYPES + MALE_BODY_TYPES, label="Body Types", value="disabled")
pg_default_tags = gr.Dropdown(["disabled", "random"] + FEMALE_DEFAULT_TAGS + MALE_DEFAULT_TAGS, label="Default Tags", value="disabled")
pg_roles = gr.Dropdown(["disabled", "random"] + ROLES, label="Roles", value="disabled")
pg_hairstyles = gr.Dropdown(["disabled", "random"] + HAIRSTYLES, label="Hairstyles", value="disabled")
pg_clothing = gr.Dropdown(["disabled", "random"] + FEMALE_CLOTHING + MALE_CLOTHING, label="Clothing", value="disabled")
with gr.Accordion("Scene Details", open=False):
pg_place = gr.Dropdown(["disabled", "random"] + PLACE, label="Place", value="disabled")
pg_lighting = gr.Dropdown(["disabled", "random"] + LIGHTING, label="Lighting", value="disabled")
pg_composition = gr.Dropdown(["disabled", "random"] + COMPOSITION, label="Composition", value="disabled")
pg_pose = gr.Dropdown(["disabled", "random"] + POSE, label="Pose", value="disabled")
pg_background = gr.Dropdown(["disabled", "random"] + BACKGROUND, label="Background", value="disabled")
with gr.Accordion("Style and Artist", open=False):
pg_additional_details = gr.Dropdown(["disabled", "random"] + FEMALE_ADDITIONAL_DETAILS + MALE_ADDITIONAL_DETAILS, label="Additional Details", value="disabled")
pg_photography_styles = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHY_STYLES, label="Photography Styles", value="disabled")
pg_device = gr.Dropdown(["disabled", "random"] + DEVICE, label="Device", value="disabled")
pg_photographer = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHER, label="Photographer", value="disabled")
pg_artist = gr.Dropdown(["disabled", "random"] + ARTIST, label="Artist", value="disabled")
pg_digital_artform = gr.Dropdown(["disabled", "random"] + DIGITAL_ARTFORM, label="Digital Artform", value="disabled")
pg_generate_button = gr.Button("Generate Prompt")
with gr.Column(scale=2):
with gr.Accordion("Image and Caption", open=False):
pg_input_image = gr.Image(label="Input Image (optional)")
pg_caption_output = gr.Textbox(label="Generated Caption", lines=3)
pg_create_caption_button = gr.Button("Create Caption")
pg_add_caption_button = gr.Button("Add Caption to Prompt")
with gr.Accordion("Prompt Generation", open=True):
pg_output = gr.Textbox(label="Generated Prompt / Input Text", lines=4)
pg_t5xxl_output = gr.Textbox(label="T5XXL Output", visible=True)
pg_clip_l_output = gr.Textbox(label="CLIP L Output", visible=True)
pg_clip_g_output = gr.Textbox(label="CLIP G Output", visible=True)
with gr.Column(scale=2):
with gr.Accordion("Prompt Generation with LLM", open=False):
pg_happy_talk = gr.Checkbox(label="Happy Talk", value=True)
pg_compress = gr.Checkbox(label="Compress", value=True)
pg_compression_level = gr.Radio(["soft", "medium", "hard"], label="Compression Level", value="hard")
pg_poster = gr.Checkbox(label="Poster", value=False)
pg_custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5)
pg_generate_text_button = gr.Button("Generate Prompt with LLM (Llama 3.1 70B)")
pg_text_output = gr.Textbox(label="Generated Text", lines=10)
def create_caption(image):
if image is not None:
return florence_caption(image)
return ""
pg_create_caption_button.click(
create_caption,
inputs=[pg_input_image],
outputs=[pg_caption_output]
)
def generate_prompt_with_dynamic_seed(*args):
# Generate a new random seed
dynamic_seed = random.randint(0, 1000000)
# Call the generate_prompt function with the dynamic seed
result = prompt_generator.generate_prompt(dynamic_seed, *args)
# Return the result along with the used seed
return [dynamic_seed] + list(result)
pg_generate_button.click(
generate_prompt_with_dynamic_seed,
inputs=[pg_custom, pg_subject, pg_gender, pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles,
pg_additional_details, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform,
pg_place, pg_lighting, pg_clothing, pg_composition, pg_pose, pg_background, pg_input_image],
outputs=[gr.Number(label="Used Seed", visible=False), pg_output, gr.Number(visible=False), pg_t5xxl_output, pg_clip_l_output, pg_clip_g_output]
) #
pg_add_caption_button.click(
prompt_generator.add_caption_to_prompt,
inputs=[pg_output, pg_caption_output],
outputs=[pg_output]
)
pg_generate_text_button.click(
huggingface_node.generate,
inputs=[pg_output, pg_happy_talk, pg_compress, pg_compression_level, pg_poster, pg_custom_base_prompt],
outputs=pg_text_output
)
def update_all_options(choice):
updates = {}
if choice == "Disabled":
for dropdown in [
pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing,
pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
]:
updates[dropdown] = gr.update(value="disabled")
elif choice == "Random":
for dropdown in [
pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing,
pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
]:
updates[dropdown] = gr.update(value="random")
else: # No Figure Random
for dropdown in [pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing, pg_pose, pg_additional_details]:
updates[dropdown] = gr.update(value="disabled")
for dropdown in [pg_artform, pg_place, pg_lighting, pg_composition, pg_background, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform]:
updates[dropdown] = gr.update(value="random")
return updates
pg_global_option.change(
update_all_options,
inputs=[pg_global_option],
outputs=[
pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing,
pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
]
)
with gr.Tab("PNG Info"):
def extract_exif_data(image):
if image is None: return ""
try:
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
for key in metadata_keys:
if key in image.info:
return image.info[key]
return str(image.info)
except Exception as e:
return f"Error extracting metadata: {str(e)}"
with gr.Row():
with gr.Column():
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
with gr.Column():
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
image_metadata.change(
fn=extract_exif_data,
inputs=[image_metadata],
outputs=[result_metadata],
)
description_ui()
gr.LoginButton()
gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)")
app.queue()
app.launch() |