Spaces:
Sleeping
Sleeping
File size: 11,576 Bytes
3a9c7c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import argparse
import numpy as np
import os
import shutil
import torch
import torch.nn.functional as F
from safetensors.torch import safe_open, save_file
import glob
from pathlib import Path
def merge_tensors(tensor1, tensor2, p):
# Calculate the delta of the weights
delta = tensor2 - tensor1
# Generate the mask m^t from Bernoulli distribution
m = torch.from_numpy(np.random.binomial(1, p, delta.shape)).to(tensor1.dtype)
# Apply the mask to the delta to get δ̃^t
delta_tilde = m * delta
# Scale the masked delta by the dropout rate to get δ̂^t
delta_hat = delta_tilde / (1 - p)
return delta_hat
def merge_safetensors(file_path1, file_path2, p, lambda_val):
merged_tensors = {}
with safe_open(file_path1, framework="pt", device="cpu") as f1, safe_open(file_path2, framework="pt", device="cpu") as f2:
keys1 = set(f1.keys())
keys2 = set(f2.keys())
common_keys = keys1.intersection(keys2)
for key in common_keys:
tensor1 = f1.get_tensor(key)
tensor2 = f2.get_tensor(key)
tensor1, tensor2 = resize_tensors(tensor1, tensor2)
merged_tensors[key] = tensor1 + lambda_val * merge_tensors(tensor1, tensor2, p)
print("merging", key)
return merged_tensors
class BinDataHandler():
def __init__(self, data):
self.data = data
def get_tensor(self, key):
return self.data[key]
def read_tensors(file_path, ext):
if ext == ".safetensors" and (file_path.endswith(".safetensors") or file_path.endswith(".sft")):
print(f"Reading tensors from {file_path} in {ext} format.")
f = safe_open(file_path, framework="pt", device="cpu")
return f, set(f.keys())
if ext == ".bin" and file_path.endswith(".bin"):
print(f"Reading tensors from {file_path} in {ext} format.")
data = torch.load(file_path, map_location=torch.device('cpu'))
f = BinDataHandler(data)
return f, set(data.keys())
return None, None
def resize_tensors(tensor1, tensor2):
if len(tensor1.shape) not in [1, 2]:
return tensor1, tensor2
if len(tensor1.shape) == 1 and len(tensor2.shape) == 1:
if tensor1.shape[-1] < tensor2.shape[-1]:
padding_size = tensor2.shape[-1] - tensor1.shape[-1]
pad = torch.nn.ConstantPad1d((padding_size, 0), 0)
tensor1 = pad(tensor1)
elif tensor2.shape[-1] < tensor1.shape[-1]:
padding_size = tensor1.shape[-1] - tensor2.shape[-1]
pad = torch.nn.ConstantPad1d((padding_size, 0), 0)
tensor2 = pad(tensor2)
else:
# Pad along the last dimension (width)
if tensor1.shape[-1] < tensor2.shape[-1]:
padding_size = tensor2.shape[-1] - tensor1.shape[-1]
tensor1 = F.pad(tensor1, (0, padding_size, 0, 0))
elif tensor2.shape[-1] < tensor1.shape[-1]:
padding_size = tensor1.shape[-1] - tensor2.shape[-1]
tensor2 = F.pad(tensor2, (0, padding_size, 0, 0))
# Pad along the first dimension (height)
if tensor1.shape[0] < tensor2.shape[0]:
padding_size = tensor2.shape[0] - tensor1.shape[0]
tensor1 = F.pad(tensor1, (0, 0, 0, padding_size))
elif tensor2.shape[0] < tensor1.shape[0]:
padding_size = tensor1.shape[0] - tensor2.shape[0]
tensor2 = F.pad(tensor2, (0, 0, 0, padding_size))
return tensor1, tensor2
def merge_folder(tensor_map, directory_path, p, lambda_val):
keys1 = set(tensor_map.keys())
# Some repos have both bin and safetensors, choose safetensors if so
ext = None
for filename in glob.glob(f'{directory_path}/**', recursive=True):
filename = os.path.normpath(filename)
# Default to safetensors
if filename.endswith(".safetensors") or filename.endswith(".sft"):
ext = ".safetensors"
if filename.endswith(".bin") and ext is None:
ext = ".bin"
if ext is None:
raise "Could not find model files"
for filename in glob.glob(f'{directory_path}/**', recursive=True):
filename = os.path.normpath(filename)
f2, keys2 = read_tensors(filename, ext)
if keys2:
common_keys = keys1.intersection(keys2)
for key in common_keys:
if "block_sparse_moe.gate" in key:
tensor1 = tensor_map[key]['tensor']
tensor2 = f2.get_tensor(key)
tensor_map[key]['tensor'] = (tensor1 + tensor2) /2.0
print("merging", key)
continue
tensor1 = tensor_map[key]['tensor']
tensor2 = f2.get_tensor(key)
tensor1, tensor2 = resize_tensors(tensor1, tensor2)
tensor_map[key]['tensor'] = tensor1 + lambda_val * merge_tensors(tensor1, tensor2, p)
print("merging", key)
return tensor_map
def merge_folder_diffusers(tensor_map, directory_path, p, lambda_val, skip_dirs):
keys1 = set(tensor_map.keys())
# Some repos have both bin and safetensors, choose safetensors if so
ext = None
for filename in [p for p in glob.glob(f'{directory_path}/*', recursive=False) if ".fp16." not in p]:
filename = os.path.normpath(filename)
# Default to safetensors
if filename.endswith(".safetensors") or filename.endswith(".sft"):
ext = ".safetensors"
if filename.endswith(".bin") and ext is None:
ext = ".bin"
if ext is None:
raise "Could not find model files"
for dirname in glob.glob(f'{directory_path}/*/', recursive=False):
if Path(dirname).stem in skip_dirs: continue
for filename in [p for p in glob.glob(f'{dirname}/*', recursive=False) if ".fp16." not in p]:
filename = os.path.normpath(filename)
f2, keys2 = read_tensors(filename, ext)
if keys2:
common_keys = keys1.intersection(keys2)
for key in common_keys:
if "block_sparse_moe.gate" in key:
tensor1 = tensor_map[key]['tensor']
tensor2 = f2.get_tensor(key)
tensor_map[key]['tensor'] = (tensor1 + tensor2) /2.0
print("merging", key)
continue
tensor1 = tensor_map[key]['tensor']
tensor2 = f2.get_tensor(key)
tensor1, tensor2 = resize_tensors(tensor1, tensor2)
tensor_map[key]['tensor'] = tensor1 + lambda_val * merge_tensors(tensor1, tensor2, p)
print("merging", key)
return tensor_map
def merge_files(base_model, second_model, output_model, p, lambda_val):
merged = merge_safetensors(base_model, second_model, p, lambda_val)
save_file(merged, output_model)
def map_tensors_to_files(directory_path):
tensor_map = {}
for filename in glob.glob(f'{directory_path}/**', recursive=True):
filename = os.path.normpath(filename)
f, keys = read_tensors(filename, '.safetensors')
if keys:
for key in keys:
tensor = f.get_tensor(key)
tensor_map[key] = {'filename':filename, 'shape':tensor.shape, 'tensor': tensor}
return tensor_map
def map_tensors_to_files_diffusers(directory_path, skip_dirs):
tensor_map = {}
for dirname in glob.glob(f'{directory_path}/*/', recursive=False):
if Path(dirname).stem in skip_dirs: continue
for filename in [p for p in glob.glob(f'{dirname}/*', recursive=False) if ".fp16." not in p]:
filename = os.path.normpath(filename)
f, keys = read_tensors(filename, '.safetensors')
if keys:
for key in keys:
tensor = f.get_tensor(key)
tensor_map[key] = {'filename':filename, 'shape':tensor.shape, 'tensor': tensor}
return tensor_map
def copy_nontensor_files(from_path, to_path):
print(f"Copying non-tensor files {from_path} to {to_path}")
shutil.copytree(from_path, to_path, ignore=shutil.ignore_patterns("*.safetensors", "*.bin", "*.sft", ".*", "README*"), dirs_exist_ok=True)
def copy_skipped_dirs(from_path, to_path, skip_dirs):
for dirname in glob.glob(f'{from_path}/*/', recursive=False):
if Path(dirname).stem in skip_dirs:
dirname = os.path.normpath(dirname)
print(f"Copying skipped files {dirname} to {to_path}")
shutil.copytree(Path(dirname).resolve(), Path(to_path, Path(dirname).stem).resolve(), ignore=shutil.ignore_patterns(".*", "README*"), dirs_exist_ok=True)
def save_tensor_map(tensor_map, output_folder):
metadata = {'format': 'pt'}
by_filename = {}
for key, value in tensor_map.items():
filename = value["filename"]
tensor = value["tensor"]
filename = os.path.normpath(filename)
if filename not in by_filename:
by_filename[filename] = {}
by_filename[filename][key] = tensor
for filename in sorted(by_filename.keys()):
filename = os.path.normpath(filename)
if Path(output_folder, Path(filename).parent.name).exists():
output_file = str(Path(output_folder, Path(filename).parent.name, Path(filename).name))
else:
output_file = str(Path(output_folder, Path(filename).name))
print("Saving:", output_file)
save_file(by_filename[filename], output_file, metadata=metadata)
def copy_dirs(src: str, dst: str):
shutil.copytree(src, dst, ignore=shutil.ignore_patterns("*.*"), dirs_exist_ok=True)
def main():
# Parse command-line arguments
parser = argparse.ArgumentParser(description='Merge two safetensor model files.')
parser.add_argument('base_model', type=str, help='The base model safetensor file')
parser.add_argument('second_model', type=str, help='The second model safetensor file')
parser.add_argument('output_model', type=str, help='The output merged model safetensor file')
parser.add_argument('-p', type=float, default=0.5, help='Dropout probability')
parser.add_argument('-lambda', dest='lambda_val', type=float, default=1.0, help='Scaling factor for the weight delta')
args = parser.parse_args()
skip_dirs = ['vae', 'text_encoder']
if os.path.isdir(args.base_model):
if not os.path.exists(args.output_model):
os.makedirs(args.output_model)
if os.path.exists(args.base_model + "/model_index.json"): # assume Diffusers Repo
copy_dirs(args.base_model, args.output_model)
tensor_map = map_tensors_to_files_diffusers(args.base_model, skip_dirs)
tensor_map = merge_folder_diffusers(tensor_map, args.second_model, args.p, args.lambda_val, skip_dirs)
copy_skipped_dirs(args.base_model, args.output_model, skip_dirs)
copy_nontensor_files(args.base_model, args.output_model)
save_tensor_map(tensor_map, args.output_model)
else:
copy_dirs(args.base_model, args.output_model)
tensor_map = map_tensors_to_files(args.base_model)
tensor_map = merge_folder(tensor_map, args.second_model, args.p, args.lambda_val)
copy_nontensor_files(args.base_model, args.output_model)
save_tensor_map(tensor_map, args.output_model)
else:
merged = merge_safetensors(args.base_model, args.second_model, args.p, args.lambda_val)
save_file(merged, args.output_model)
if __name__ == '__main__':
main()
|