Spaces:
Sleeping
Sleeping
File size: 14,837 Bytes
3a9c7c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
from tqdm import tqdm
import argparse
import requests
import merge
import os
import sys
import shutil
import yaml
from pathlib import Path
import gradio as gr
def parse_arguments():
parser = argparse.ArgumentParser(description="Merge HuggingFace models")
parser.add_argument('repo_list', type=str, help='File containing list of repositories to merge, supports mergekit yaml or txt')
parser.add_argument('output_dir', type=str, help='Directory for the merged models')
parser.add_argument('-base_model', type=str, default='staging/base_model', help='Base model directory')
parser.add_argument('-staging_model', type=str, default='staging/merge_model', help='Staging model directory')
parser.add_argument('-p', type=float, default=0.5, help='Dropout probability')
parser.add_argument('-lambda', dest='lambda_val', type=float, default=1.0, help='Scaling factor for the weight delta')
parser.add_argument('--dry', action='store_true', help='Run in dry mode without making any changes')
return parser.parse_args()
def repo_list_generator(file_path, default_p, default_lambda_val):
_, file_extension = os.path.splitext(file_path)
# Branching based on file extension
if file_extension.lower() == '.yaml' or file_extension.lower() == ".yml":
with open(file_path, 'r', encoding='utf-8') as file:
data = yaml.safe_load(file)
for model_info in data['models']:
model_name = model_info['model']
p = model_info.get('parameters', {}).get('weight', default_p)
lambda_val = 1 / model_info.get('parameters', {}).get('density', default_lambda_val)
yield model_name, p, lambda_val
else: # Defaulting to txt file processing
with open(file_path, "r", encoding='utf-8') as file:
repos_to_process = file.readlines()
for repo in repos_to_process:
yield repo.strip(), default_p, default_lambda_val
def reset_directories(directories, dry_run):
for directory in directories:
if os.path.exists(directory):
if dry_run:
print(f"[DRY RUN] Would delete directory {directory}")
else:
shutil.rmtree(directory)
print(f"Directory {directory} deleted successfully.")
def do_merge(tensor_map, staging_path, p, lambda_val, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would merge with {staging_path}")
else:
try:
print(f"Merge operation for {staging_path}")
tensor_map = merge.merge_folder(tensor_map, staging_path, p, lambda_val)
print("Merge operation completed successfully.")
except Exception as e:
print(f"Error during merge operation: {e}")
return tensor_map
def do_merge_files(base_path, staging_path, output_path, p, lambda_val, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would merge with {staging_path}")
else:
try:
print(f"Merge operation for {staging_path}")
tensor_map = merge.merge_files(base_path, staging_path, output_path, p, lambda_val)
print("Merge operation completed successfully.")
except Exception as e:
print(f"Error during merge operation: {e}")
return tensor_map
def do_merge_diffusers(tensor_map, staging_path, p, lambda_val, skip_dirs, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would merge with {staging_path}")
else:
try:
print(f"Merge operation for {staging_path}")
tensor_map = merge.merge_folder_diffusers(tensor_map, staging_path, p, lambda_val, skip_dirs)
print("Merge operation completed successfully.")
except Exception as e:
print(f"Error during merge operation: {e}")
return tensor_map
def download_repo(repo_name, path, dry_run=False):
from huggingface_hub import snapshot_download
if dry_run:
print(f"[DRY RUN] Would download repository {repo_name} to {path}")
else:
print(f"Repository {repo_name} cloning.")
try:
snapshot_download(repo_id=repo_name, local_dir=path)
except Exception as e:
print(e)
return
print(f"Repository {repo_name} cloned successfully.")
def download_thing(directory, url, progress=gr.Progress(track_tqdm=True)):
civitai_api_key= os.environ.get("CIVITAI_API_KEY")
url = url.strip()
if "drive.google.com" in url:
original_dir = os.getcwd()
os.chdir(directory)
os.system(f"gdown --fuzzy {url}")
os.chdir(original_dir)
elif "huggingface.co" in url:
url = url.replace("?download=true", "")
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/")
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
else:
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
elif "civitai.com" in url:
if "?" in url:
url = url.split("?")[0]
if civitai_api_key:
url = url + f"?token={civitai_api_key}"
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
else:
print("You need an API key to download Civitai models.")
else:
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
def get_local_model_list(dir_path):
model_list = []
valid_extensions = ('.safetensors')
for file in Path(dir_path).glob("*"):
if file.suffix in valid_extensions:
file_path = str(Path(f"{dir_path}/{file.name}"))
model_list.append(file_path)
return model_list
def list_sub(a, b):
return [e for e in a if e not in b]
def get_download_file(temp_dir, url):
new_file = None
if not "http" in url and Path(url).exists():
print(f"Use local file: {url}")
new_file = url
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
print(f"File to download alreday exists: {url}")
new_file = f"{temp_dir}/{url.split('/')[-1]}"
else:
print(f"Start downloading: {url}")
before = get_local_model_list(temp_dir)
try:
download_thing(temp_dir, url.strip())
except Exception:
print(f"Download failed: {url}")
return None
after = get_local_model_list(temp_dir)
new_file = list_sub(after, before)[0] if list_sub(after, before) else None
if new_file is None:
print(f"Download failed: {url}")
return None
print(f"Download completed: {url}")
return new_file
def download_file(url, path, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would download file {url} to {path}")
else:
print(f"File {url} cloning.")
try:
path = get_download_file(path, url)
except Exception as e:
print(e)
return None
print(f"File {url} cloned successfully.")
return path
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/,\s]+?/[^/,\s]+?$', s)
def should_create_symlink(repo_name):
if os.path.exists(repo_name):
return True, os.path.isfile(repo_name)
return False, False
def download_or_link_repo(repo_name, path, dry_run=False):
symlink, is_file = should_create_symlink(repo_name)
if symlink and is_file:
os.makedirs(path, exist_ok=True)
symlink_path = os.path.join(path, os.path.basename(repo_name))
os.symlink(repo_name, symlink_path)
elif symlink:
os.symlink(repo_name, path)
elif "http" in repo_name:
return download_file(repo_name, path, dry_run)
elif is_repo_name(repo_name):
download_repo(repo_name, path, dry_run)
return None
def delete_repo(path, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would delete repository at {path}")
else:
try:
shutil.rmtree(path)
print(f"Repository at {path} deleted successfully.")
except Exception as e:
print(f"Error deleting repository at {path}: {e}")
def get_max_vocab_size(repo_list):
max_vocab_size = 0
repo_with_max_vocab = None
for repo in repo_list:
repo_name = repo[0].strip()
url = f"https://huggingface.co/{repo_name}/raw/main/config.json"
try:
response = requests.get(url)
response.raise_for_status()
config = response.json()
vocab_size = config.get("vocab_size", 0)
if vocab_size > max_vocab_size:
max_vocab_size = vocab_size
repo_with_max_vocab = repo_name
except requests.RequestException as e:
print(f"Error fetching data from {url}: {e}")
return max_vocab_size, repo_with_max_vocab
def download_json_files(repo_name, file_paths, output_dir):
base_url = f"https://huggingface.co/{repo_name}/raw/main/"
for file_path in file_paths:
url = base_url + file_path
response = requests.get(url)
if response.status_code == 200:
with open(os.path.join(output_dir, os.path.basename(file_path)), 'wb') as file:
file.write(response.content)
else:
print(f"Failed to download {file_path}")
def get_merged_path(filename, output_dir):
from datetime import datetime, timezone, timedelta
dt_now = datetime.now(timezone(timedelta(hours=9)))
basename = dt_now.strftime('Merged_%Y%m%d_%H%M')
ext = Path(filename).suffix
return str(Path(output_dir, basename + ext)), str(Path(output_dir, basename + ".yaml"))
def repo_list_to_yaml(repo_list_path, repo_list, output_yaml_path):
if Path(repo_list_path).suffix.lower() in (".yaml", ".yml"):
shutil.copy(repo_list_path, output_yaml_path)
else:
repos = list(repo_list)
yaml_dict = {}
yaml_dict.setdefault('models', {})
for repo in repos:
model, weight, density = repo
model_info = {}
model_info['model'] = str(model)
model_info.setdefault('parameters', {})
model_info['parameters']['weight'] = float(weight)
model_info['parameters']['density'] = float(density)
yaml_dict['models'][str(model.split("/")[-1])] = model_info
with open(output_yaml_path, mode='w', encoding='utf-8') as file:
yaml.dump(yaml_dict, file, default_flow_style=False, allow_unicode=True)
def process_repos(output_dir, base_model, staging_model, repo_list_file, p, lambda_val, skip_dirs, dry_run=False, progress=gr.Progress(track_tqdm=True)):
repo_type = "Default" # ("Default", "Files", "Diffusers")
# Check if output_dir exists
if os.path.exists(output_dir):
sys.exit(f"Output directory '{output_dir}' already exists. Exiting to prevent data loss.")
# Reset base and staging directories
reset_directories([base_model, staging_model], dry_run)
# Make sure staging and output directories exist
os.makedirs(base_model, exist_ok=True)
os.makedirs(staging_model, exist_ok=True)
repo_list_gen = repo_list_generator(repo_list_file, p, lambda_val)
repos_to_process = list(repo_list_gen)
# Initial download for 'base_model'
path = download_or_link_repo(repos_to_process[0][0].strip(), base_model, dry_run)
if path is not None and (".safetensors" in path or ".sft" in path): repo_type = "Files"
elif Path(base_model, "model_index.json").exists(): repo_type = "Diffusers"
if repo_type == "Files":
os.makedirs(output_dir, exist_ok=True)
output_file_path, output_yaml_path = get_merged_path(path, output_dir)
repo_list_to_yaml(repo_list_file, repo_list_gen, output_yaml_path)
for i, repo in enumerate(tqdm(repos_to_process[1:], desc='Merging Files')):
repo_name = repo[0].strip()
repo_p = repo[1]
repo_lambda = repo[2]
delete_repo(staging_model, dry_run)
staging_path = download_or_link_repo(repo_name, staging_model, dry_run)
do_merge_files(path, staging_path, output_file_path, repo_p, repo_lambda, dry_run)
reset_directories([base_model, staging_model], dry_run)
return output_file_path, output_yaml_path
elif repo_type == "Diffusers":
merge.copy_dirs(base_model, output_dir)
tensor_map = merge.map_tensors_to_files_diffusers(base_model, skip_dirs)
for i, repo in enumerate(tqdm(repos_to_process[1:], desc='Merging Repos')):
repo_name = repo[0].strip()
repo_p = repo[1]
repo_lambda = repo[2]
delete_repo(staging_model, dry_run)
download_or_link_repo(repo_name, staging_model, dry_run)
tensor_map = do_merge_diffusers(tensor_map, staging_model, repo_p, repo_lambda, skip_dirs, dry_run)
os.makedirs(output_dir, exist_ok=True)
merge.copy_skipped_dirs(base_model, output_dir, skip_dirs)
merge.copy_nontensor_files(base_model, output_dir)
merge.save_tensor_map(tensor_map, output_dir)
reset_directories([base_model, staging_model], dry_run)
return None, None
elif repo_type == "Default":
merge.copy_dirs(base_model, output_dir)
tensor_map = merge.map_tensors_to_files(base_model)
for i, repo in enumerate(tqdm(repos_to_process[1:], desc='Merging Repos')):
repo_name = repo[0].strip()
repo_p = repo[1]
repo_lambda = repo[2]
delete_repo(staging_model, dry_run)
download_or_link_repo(repo_name, staging_model, dry_run)
tensor_map = do_merge(tensor_map, staging_model, repo_p, repo_lambda, dry_run)
os.makedirs(output_dir, exist_ok=True)
merge.copy_nontensor_files(base_model, output_dir)
# Handle LLMs that add tokens by taking the largest
if os.path.exists(os.path.join(output_dir, 'config.json')):
max_vocab_size, repo_name = get_max_vocab_size(repos_to_process)
if max_vocab_size > 0:
file_paths = ['config.json', 'special_tokens_map.json', 'tokenizer.json', 'tokenizer_config.json']
download_json_files(repo_name, file_paths, output_dir)
reset_directories([base_model, staging_model], dry_run)
merge.save_tensor_map(tensor_map, output_dir)
return None, None
if __name__ == "__main__":
args = parse_arguments()
skip_dirs = ['vae', 'text_encoder']
process_repos(args.output_dir, args.base_model, args.staging_model, args.repo_list, args.p, args.lambda_val, skip_dirs, args.dry)
|