File size: 21,567 Bytes
7b3233b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
"""This module should not be used directly as its API is subject to change. Instead,
use the `gr.Blocks.load()` or `gr.Interface.load()` functions."""

from __future__ import annotations

import json
import re
import uuid
import warnings
from copy import deepcopy
from typing import TYPE_CHECKING, Callable, Dict

import requests

import gradio
from gradio import components, utils
from gradio.exceptions import TooManyRequestsError
from gradio.external_utils import (
    cols_to_rows,
    encode_to_base64,
    get_tabular_examples,
    get_ws_fn,
    postprocess_label,
    rows_to_cols,
    streamline_spaces_interface,
    use_websocket,
)
from gradio.processing_utils import to_binary

if TYPE_CHECKING:
    from gradio.blocks import Blocks
    from gradio.interface import Interface


connect_timeout = 30
server_timeout = 600


def load_blocks_from_repo(
    name: str, src: str |None = None, api_key: str = None, alias: str = None, **kwargs
) -> Blocks:
    """Creates and returns a Blocks instance from a Hugging Face model or Space repo."""
    if src is None:
        # Separate the repo type (e.g. "model") from repo name (e.g. "google/vit-base-patch16-224")
        tokens = name.split("/")
        assert (
            len(tokens) > 1
        ), "Either `src` parameter must be provided, or `name` must be formatted as {src}/{repo name}"
        src = tokens[0]
        name = "/".join(tokens[1:])

    factory_methods: Dict[str, Callable] = {
        # for each repo type, we have a method that returns the Interface given the model name & optionally an api_key
        "huggingface": from_model,
        "models": from_model,
        "spaces": from_spaces,
    }
    assert src.lower() in factory_methods, "parameter: src must be one of {}".format(
        factory_methods.keys()
    )

    blocks: gradio.Blocks = factory_methods[src](name, api_key, alias, **kwargs)
    return blocks


def from_model(model_name: str, api_key: str | None, alias: str | None, **kwargs):
    model_url = "https://huggingface.co/{}".format(model_name)
    api_url = "https://api-inference.huggingface.co/models/{}".format(model_name)
    print("Fetching model from: {}".format(model_url))

    headers = {"Authorization": f"Bearer {api_key}"} if api_key is not None else {}

    # Checking if model exists, and if so, it gets the pipeline
    response = requests.request("GET", api_url, headers=headers, timeout=(connect_timeout, server_timeout))
    assert (
        response.status_code == 200
    ), f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `api_key` parameter."
    p = response.json().get("pipeline_tag")

    pipelines = {
        "audio-classification": {
            # example model: ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition
            "inputs": components.Audio(source="upload", type="filepath", label="Input"),
            "outputs": components.Label(label="Class"),
            "preprocess": lambda i: to_binary,
            "postprocess": lambda r: postprocess_label(
                {i["label"].split(", ")[0]: i["score"] for i in r.json()}
            ),
        },
        "audio-to-audio": {
            # example model: facebook/xm_transformer_sm_all-en
            "inputs": components.Audio(source="upload", type="filepath", label="Input"),
            "outputs": components.Audio(label="Output"),
            "preprocess": to_binary,
            "postprocess": encode_to_base64,
        },
        "automatic-speech-recognition": {
            # example model: facebook/wav2vec2-base-960h
            "inputs": components.Audio(source="upload", type="filepath", label="Input"),
            "outputs": components.Textbox(label="Output"),
            "preprocess": to_binary,
            "postprocess": lambda r: r.json()["text"],
        },
        "feature-extraction": {
            # example model: julien-c/distilbert-feature-extraction
            "inputs": components.Textbox(label="Input"),
            "outputs": components.Dataframe(label="Output"),
            "preprocess": lambda x: {"inputs": x},
            "postprocess": lambda r: r.json()[0],
        },
        "fill-mask": {
            "inputs": components.Textbox(label="Input"),
            "outputs": components.Label(label="Classification"),
            "preprocess": lambda x: {"inputs": x},
            "postprocess": lambda r: postprocess_label(
                {i["token_str"]: i["score"] for i in r.json()}
            ),
        },
        "image-classification": {
            # Example: google/vit-base-patch16-224
            "inputs": components.Image(type="filepath", label="Input Image"),
            "outputs": components.Label(label="Classification"),
            "preprocess": to_binary,
            "postprocess": lambda r: postprocess_label(
                {i["label"].split(", ")[0]: i["score"] for i in r.json()}
            ),
        },
        "question-answering": {
            # Example: deepset/xlm-roberta-base-squad2
            "inputs": [
                components.Textbox(lines=7, label="Context"),
                components.Textbox(label="Question"),
            ],
            "outputs": [
                components.Textbox(label="Answer"),
                components.Label(label="Score"),
            ],
            "preprocess": lambda c, q: {"inputs": {"context": c, "question": q}},
            "postprocess": lambda r: (r.json()["answer"], {"label": r.json()["score"]}),
        },
        "summarization": {
            # Example: facebook/bart-large-cnn
            "inputs": components.Textbox(label="Input"),
            "outputs": components.Textbox(label="Summary"),
            "preprocess": lambda x: {"inputs": x},
            "postprocess": lambda r: r.json()[0]["summary_text"],
        },
        "text-classification": {
            # Example: distilbert-base-uncased-finetuned-sst-2-english
            "inputs": components.Textbox(label="Input"),
            "outputs": components.Label(label="Classification"),
            "preprocess": lambda x: {"inputs": x},
            "postprocess": lambda r: postprocess_label(
                {i["label"].split(", ")[0]: i["score"] for i in r.json()[0]}
            ),
        },
        "text-generation": {
            # Example: gpt2
            "inputs": components.Textbox(label="Input"),
            "outputs": components.Textbox(label="Output"),
            "preprocess": lambda x: {"inputs": x},
            "postprocess": lambda r: r.json()[0]["generated_text"],
        },
        "text2text-generation": {
            # Example: valhalla/t5-small-qa-qg-hl
            "inputs": components.Textbox(label="Input"),
            "outputs": components.Textbox(label="Generated Text"),
            "preprocess": lambda x: {"inputs": x},
            "postprocess": lambda r: r.json()[0]["generated_text"],
        },
        "translation": {
            "inputs": components.Textbox(label="Input"),
            "outputs": components.Textbox(label="Translation"),
            "preprocess": lambda x: {"inputs": x},
            "postprocess": lambda r: r.json()[0]["translation_text"],
        },
        "zero-shot-classification": {
            # Example: facebook/bart-large-mnli
            "inputs": [
                components.Textbox(label="Input"),
                components.Textbox(label="Possible class names (" "comma-separated)"),
                components.Checkbox(label="Allow multiple true classes"),
            ],
            "outputs": components.Label(label="Classification"),
            "preprocess": lambda i, c, m: {
                "inputs": i,
                "parameters": {"candidate_labels": c, "multi_class": m},
            },
            "postprocess": lambda r: postprocess_label(
                {
                    r.json()["labels"][i]: r.json()["scores"][i]
                    for i in range(len(r.json()["labels"]))
                }
            ),
        },
        "sentence-similarity": {
            # Example: sentence-transformers/distilbert-base-nli-stsb-mean-tokens
            "inputs": [
                components.Textbox(
                    value="That is a happy person", label="Source Sentence"
                ),
                components.Textbox(
                    lines=7,
                    placeholder="Separate each sentence by a newline",
                    label="Sentences to compare to",
                ),
            ],
            "outputs": components.Label(label="Classification"),
            "preprocess": lambda src, sentences: {
                "inputs": {
                    "source_sentence": src,
                    "sentences": [s for s in sentences.splitlines() if s != ""],
                }
            },
            "postprocess": lambda r: postprocess_label(
                {f"sentence {i}": v for i, v in enumerate(r.json())}
            ),
        },
        "text-to-speech": {
            # Example: julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train
            "inputs": components.Textbox(label="Input"),
            "outputs": components.Audio(label="Audio"),
            "preprocess": lambda x: {"inputs": x},
            "postprocess": encode_to_base64,
        },
        "text-to-image": {
            # example model: osanseviero/BigGAN-deep-128
            "inputs": components.Textbox(label="Input"),
            "outputs": components.Image(label="Output"),
            "preprocess": lambda x: {"inputs": x},
            "postprocess": encode_to_base64,
        },
        "token-classification": {
            # example model: huggingface-course/bert-finetuned-ner
            "inputs": components.Textbox(label="Input"),
            "outputs": components.HighlightedText(label="Output"),
            "preprocess": lambda x: {"inputs": x},
            "postprocess": lambda r: r,  # Handled as a special case in query_huggingface_api()
        },
    }

    if p in ["tabular-classification", "tabular-regression"]:
        example_data = get_tabular_examples(model_name)
        col_names, example_data = cols_to_rows(example_data)
        example_data = [[example_data]] if example_data else None

        pipelines[p] = {
            "inputs": components.Dataframe(
                label="Input Rows",
                type="pandas",
                headers=col_names,
                col_count=(len(col_names), "fixed"),
            ),
            "outputs": components.Dataframe(
                label="Predictions", type="array", headers=["prediction"]
            ),
            "preprocess": rows_to_cols,
            "postprocess": lambda r: {
                "headers": ["prediction"],
                "data": [[pred] for pred in json.loads(r.text)],
            },
            "examples": example_data,
        }

    if p is None or not (p in pipelines):
        raise ValueError("Unsupported pipeline type: {}".format(p))

    pipeline = pipelines[p]

    # https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks/text-to-image
    # https://huggingface.co/docs/huggingface_hub/main/package_reference/inference_types
    # https://huggingface.co/docs/api-inference/detailed_parameters
    def query_huggingface_api(*params, **kwargs):
        # Convert to a list of input components
        data = pipeline["preprocess"](*params)
        if isinstance(
            data, dict
        ):  # HF doesn't allow additional parameters for binary files (e.g. images or audio files)
            data.update({"options": {"wait_for_model": True}})
            if "negative_prompt" in kwargs.keys(): kwargs["negative_prompt"] = [kwargs["negative_prompt"]]
            width = kwargs.pop("width") if "width" in kwargs.keys() else None
            height = kwargs.pop("height") if "height" in kwargs.keys() else None
            if width is not None and height is not None: kwargs["target_size"] = {"height": int(height), "width": int(width)} #
            data.update({"parameters": kwargs.copy()})
            data = json.dumps(data)
        response = requests.request("POST", api_url, headers=headers, data=data, timeout=(connect_timeout, server_timeout))
        if not (response.status_code == 200):
            errors_json = response.json()
            errors, warns = "", ""
            if errors_json.get("error"):
                errors = f", Error: {errors_json.get('error')}"
            if errors_json.get("warnings"):
                warns = f", Warnings: {errors_json.get('warnings')}"
            raise ValueError(
                f"Could not complete request to HuggingFace API, Status Code: {response.status_code}"
                + errors
                + warns
            )
        if (
            p == "token-classification"
        ):  # Handle as a special case since HF API only returns the named entities and we need the input as well
            ner_groups = response.json()
            input_string = params[0]
            response = utils.format_ner_list(input_string, ner_groups)
        output = pipeline["postprocess"](response)
        return output

    if alias is None:
        query_huggingface_api.__name__ = model_name
    else:
        query_huggingface_api.__name__ = alias

    interface_info = {
        "fn": query_huggingface_api,
        "inputs": pipeline["inputs"],
        "outputs": pipeline["outputs"],
        "title": model_name,
        #"examples": pipeline.get("examples"),
    }

    kwargs = dict(interface_info, **kwargs)
    kwargs["_api_mode"] = True  # So interface doesn't run pre/postprocess.
    interface = gradio.Interface(**kwargs)
    return interface


def from_spaces(space_name: str, api_key: str | None, alias: str, **kwargs) -> Blocks:
    space_url = "https://huggingface.co/spaces/{}".format(space_name)

    print("Fetching Space from: {}".format(space_url))

    headers = {}
    if api_key is not None:
        headers["Authorization"] = f"Bearer {api_key}"

    iframe_url = (
        requests.get(
            f"https://huggingface.co/api/spaces/{space_name}/host", headers=headers
        )
        .json()
        .get("host")
    )

    if iframe_url is None:
        raise ValueError(
            f"Could not find Space: {space_name}. If it is a private or gated Space, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `api_key` parameter."
        )

    r = requests.get(iframe_url, headers=headers)

    result = re.search(
        r"window.gradio_config = (.*?);[\s]*</script>", r.text
    )  # some basic regex to extract the config
    try:
        config = json.loads(result.group(1))
    except AttributeError:
        raise ValueError("Could not load the Space: {}".format(space_name))
    if "allow_flagging" in config:  # Create an Interface for Gradio 2.x Spaces
        return from_spaces_interface(
            space_name, config, alias, api_key, iframe_url, **kwargs
        )
    else:  # Create a Blocks for Gradio 3.x Spaces
        if kwargs:
            warnings.warn(
                "You cannot override parameters for this Space by passing in kwargs. "
                "Instead, please load the Space as a function and use it to create a "
                "Blocks or Interface locally. You may find this Guide helpful: "
                "https://gradio.app/using_blocks_like_functions/"
            )
        return from_spaces_blocks(config, api_key, iframe_url)


def from_spaces_blocks(config: Dict, api_key: str | None, iframe_url: str) -> Blocks:
    api_url = "{}/api/predict/".format(iframe_url)

    headers = {"Content-Type": "application/json"}
    if api_key is not None:
        headers["Authorization"] = f"Bearer {api_key}"
    ws_url = "{}/queue/join".format(iframe_url).replace("https", "wss")

    ws_fn = get_ws_fn(ws_url, headers)

    fns = []
    for d, dependency in enumerate(config["dependencies"]):
        if dependency["backend_fn"]:

            def get_fn(outputs, fn_index, use_ws):
                def fn(*data):
                    data = json.dumps({"data": data, "fn_index": fn_index})
                    hash_data = json.dumps(
                        {"fn_index": fn_index, "session_hash": str(uuid.uuid4())}
                    )
                    if use_ws:
                        result = utils.synchronize_async(ws_fn, data, hash_data)
                        output = result["data"]
                    else:
                        response = requests.post(api_url, headers=headers, data=data)
                        result = json.loads(response.content.decode("utf-8"))
                        try:
                            output = result["data"]
                        except KeyError:
                            if "error" in result and "429" in result["error"]:
                                raise TooManyRequestsError(
                                    "Too many requests to the Hugging Face API"
                                )
                            raise KeyError(
                                f"Could not find 'data' key in response from external Space. Response received: {result}"
                            )
                    if len(outputs) == 1:
                        output = output[0]
                    return output

                return fn

            fn = get_fn(
                deepcopy(dependency["outputs"]), d, use_websocket(config, dependency)
            )
            fns.append(fn)
        else:
            fns.append(None)
    return gradio.Blocks.from_config(config, fns, iframe_url)


def from_spaces_interface(
    model_name: str,
    config: Dict,
    alias: str,
    api_key: str | None,
    iframe_url: str,
    **kwargs,
) -> Interface:

    config = streamline_spaces_interface(config)
    api_url = "{}/api/predict/".format(iframe_url)
    headers = {"Content-Type": "application/json"}
    if api_key is not None:
        headers["Authorization"] = f"Bearer {api_key}"

    # The function should call the API with preprocessed data
    def fn(*data):
        data = json.dumps({"data": data})
        response = requests.post(api_url, headers=headers, data=data)
        result = json.loads(response.content.decode("utf-8"))
        try:
            output = result["data"]
        except KeyError:
            if "error" in result and "429" in result["error"]:
                raise TooManyRequestsError("Too many requests to the Hugging Face API")
            raise KeyError(
                f"Could not find 'data' key in response from external Space. Response received: {result}"
            )
        if (
            len(config["outputs"]) == 1
        ):  # if the fn is supposed to return a single value, pop it
            output = output[0]
        if len(config["outputs"]) == 1 and isinstance(
            output, list
        ):  # Needed to support Output.Image() returning bounding boxes as well (TODO: handle different versions of gradio since they have slightly different APIs)
            output = output[0]
        return output

    fn.__name__ = alias if (alias is not None) else model_name
    config["fn"] = fn

    kwargs = dict(config, **kwargs)
    kwargs["_api_mode"] = True
    interface = gradio.Interface(**kwargs)
    return interface


def gr_Interface_load(
    name: str,
    src: str | None = None,
    hf_token: str | None = None,
    alias: str | None = None,
    **kwargs,
) -> Blocks:
    try:
        return load_blocks_from_repo(name, src, hf_token, alias)
    except Exception as e:
        print(e)
        return gradio.Interface(lambda: None, ['text'], ['image'])


def list_uniq(l):
    return sorted(set(l), key=l.index)


def get_status(model_name: str):
    from huggingface_hub import InferenceClient
    client = InferenceClient(timeout=10)
    return client.get_model_status(model_name)


def is_loadable(model_name: str, force_gpu: bool = False):
    try:
        status = get_status(model_name)
    except Exception as e:
        print(e)
        print(f"Couldn't load {model_name}.")
        return False
    gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
    if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
        print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
    return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)


def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
    from huggingface_hub import HfApi
    api = HfApi()
    default_tags = ["diffusers"]
    if not sort: sort = "last_modified"
    limit = limit * 20 if check_status and force_gpu else limit * 5
    models = []
    try:
        model_infos = api.list_models(author=author, task="text-to-image",
                                       tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
    except Exception as e:
        print(f"Error: Failed to list models.")
        print(e)
        return models
    for model in model_infos:
        if not model.private and not model.gated:
           loadable = is_loadable(model.id, force_gpu) if check_status else True
           if not_tag and not_tag in model.tags or not loadable: continue
           models.append(model.id)
           if len(models) == limit: break
    return models