Spaces:
Running
Running
File size: 9,586 Bytes
a009ad0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import gradio as gr
import asyncio
from threading import RLock
from pathlib import Path
import os
from typing import Union
HF_TOKEN = os.getenv("HF_TOKEN", None)
server_timeout = 600
inference_timeout = 600
lock = RLock()
loaded_models = {}
def rename_image(image_path: Union[str, None], model_name: str, save_path: Union[str, None] = None):
import shutil
from datetime import datetime, timezone, timedelta
if image_path is None: return None
dt_now = datetime.now(timezone(timedelta(hours=9)))
filename = f"{model_name.split('/')[-1]}_{dt_now.strftime('%Y%m%d_%H%M%S')}.png"
try:
if Path(image_path).exists():
png_path = "image.png"
if str(Path(image_path).resolve()) != str(Path(png_path).resolve()): shutil.copy(image_path, png_path)
if save_path is not None:
new_path = str(Path(png_path).resolve().rename(Path(save_path).resolve()))
else:
new_path = str(Path(png_path).resolve().rename(Path(filename).resolve()))
return new_path
else:
return None
except Exception as e:
print(e)
return None
# https://github.com/gradio-app/gradio/blob/main/gradio/external.py
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
from typing import Literal
def load_from_model(model_name: str, hf_token: Union[str, Literal[False], None] = None):
import httpx
import huggingface_hub
from gradio.exceptions import ModelNotFoundError, TooManyRequestsError
model_url = f"https://huggingface.co/{model_name}"
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
print(f"Fetching model from: {model_url}")
headers = ({} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"})
response = httpx.request("GET", api_url, headers=headers)
if response.status_code != 200:
raise ModelNotFoundError(
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
)
p = response.json().get("pipeline_tag")
if p != "text-to-image": raise ModelNotFoundError(f"This model isn't for text-to-image or unsupported: {model_name}.")
headers["X-Wait-For-Model"] = "true"
kwargs = {}
if hf_token is not None: kwargs["token"] = hf_token
client = huggingface_hub.InferenceClient(model=model_name, headers=headers, timeout=server_timeout, **kwargs)
inputs = gr.components.Textbox(label="Input")
outputs = gr.components.Image(label="Output")
fn = client.text_to_image
def query_huggingface_inference_endpoints(*data, **kwargs):
try:
data = fn(*data, **kwargs) # type: ignore
except huggingface_hub.utils.HfHubHTTPError as e:
print(e)
if "429" in str(e): raise TooManyRequestsError() from e
except Exception as e:
print(e)
raise Exception() from e
return data
interface_info = {
"fn": query_huggingface_inference_endpoints,
"inputs": inputs,
"outputs": outputs,
"title": model_name,
}
return gr.Interface(**interface_info)
def load_model(model_name: str):
global loaded_models
global model_info_dict
if model_name in loaded_models.keys(): return loaded_models[model_name]
try:
loaded_models[model_name] = load_from_model(model_name, hf_token=HF_TOKEN)
print(f"Loaded: {model_name}")
except Exception as e:
if model_name in loaded_models.keys(): del loaded_models[model_name]
print(f"Failed to load: {model_name}")
print(e)
return None
return loaded_models[model_name]
def load_models(models: list):
for model in models:
load_model(model)
def warm_model(model_name: str):
model = load_model(model_name)
if model:
try:
print(f"Warming model: {model_name}")
infer_body(model, model_name, " ")
except Exception as e:
print(e)
def warm_models(models: list[str]):
for model in models:
asyncio.new_event_loop().run_in_executor(None, warm_model, model)
# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
def infer_body(client: Union[gr.Interface, object], model_str: str, prompt: str, neg_prompt: str = "",
height: int = 0, width: int = 0, steps: int = 0, cfg: int = 0, seed: int = -1):
png_path = "image.png"
kwargs = {}
if height > 0: kwargs["height"] = height
if width > 0: kwargs["width"] = width
if steps > 0: kwargs["num_inference_steps"] = steps
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
if seed == -1: kwargs["seed"] = randomize_seed()
else: kwargs["seed"] = seed
try:
if isinstance(client, gr.Interface): image = client.fn(prompt=prompt, negative_prompt=neg_prompt, **kwargs)
else: return None
if isinstance(image, tuple): return None
return save_image(image, png_path, model_str, prompt, neg_prompt, height, width, steps, cfg, seed)
except Exception as e:
print(e)
raise Exception(e) from e
async def infer(model_name: str, prompt: str, neg_prompt: str ="", height: int = 0, width: int = 0,
steps: int = 0, cfg: int = 0, seed: int = -1,
save_path: str | None = None, timeout: float = inference_timeout):
model = load_model(model_name)
if not model: return None
task = asyncio.create_task(asyncio.to_thread(infer_body, model, model_name, prompt, neg_prompt,
height, width, steps, cfg, seed))
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except asyncio.TimeoutError as e:
print(e)
print(f"Task timed out: {model_name}")
if not task.done(): task.cancel()
result = None
raise Exception(f"Task timed out: {model_name}") from e
except Exception as e:
print(e)
if not task.done(): task.cancel()
result = None
raise Exception(e) from e
if task.done() and result is not None:
with lock:
image = rename_image(result, model_name, save_path)
return image
return None
def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1):
from PIL import Image, PngImagePlugin
import json
try:
metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}}
if steps > 0: metadata["num_inference_steps"] = steps
if cfg > 0: metadata["guidance_scale"] = cfg
if seed != -1: metadata["seed"] = seed
if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}"
metadata_str = json.dumps(metadata)
info = PngImagePlugin.PngInfo()
info.add_text("metadata", metadata_str)
image.save(savefile, "PNG", pnginfo=info)
return str(Path(savefile).resolve())
except Exception as e:
print(f"Failed to save image file: {e}")
raise Exception(f"Failed to save image file:") from e
def randomize_seed():
from random import seed, randint
MAX_SEED = 2**32-1
seed()
rseed = randint(0, MAX_SEED)
return rseed
def gen_image(model_name: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0,
steps: int = 0, cfg: int = 0, seed: int = -1):
if model_name in ["NA", ""]: return gr.update()
try:
loop = asyncio.get_running_loop()
except Exception:
loop = asyncio.new_event_loop()
try:
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
steps, cfg, seed, None, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"Task aborted: {model_name}, Error: {e}")
result = None
raise gr.Error(f"Task aborted: {model_name}, Error: {e}")
finally:
loop.close()
return result
def generate_image_hf(model_name: str, prompt: str, negative_prompt: str, use_defaults: bool, resolution: str,
guidance_scale: float, num_inference_steps: int, seed: int, randomize_seed: bool, progress=gr.Progress()):
if randomize_seed: seed = -1
if use_defaults:
prompt = f"{prompt}, best quality, amazing quality, very aesthetic"
negative_prompt = f"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], {negative_prompt}"
width, height = map(int, resolution.split('x'))
image = gen_image(model_name, prompt, negative_prompt, height, width, num_inference_steps, guidance_scale)
metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}"
return image, seed, metadata_text
|