File size: 10,562 Bytes
da2e837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e93cd05
da2e837
 
 
 
 
 
 
 
 
 
 
 
 
e93cd05
da2e837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e93cd05
da2e837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e93cd05
84a5684
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
import os 
import sys
from pathlib import Path
from all_models import models
from externalmod import gr_Interface_load
from prompt_extend import extend_prompt
from random import randint
import asyncio
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.

inference_timeout = 300
MAX_SEED = 2**32-1
current_model = models[0]
new_models = ", ".join([m.split("/")[-1] for m in models[0:6]])
text_gen1 = extend_prompt
#text_gen1=gr_Interface_load("spaces/phenomenon1981/MagicPrompt-Stable-Diffusion") 
#text_gen1=gr_Interface_load("spaces/Yntec/prompt-extend") 
#text_gen1=gr_Interface_load("spaces/daspartho/prompt-extend") 
#text_gen1=gr_Interface_load("spaces/Omnibus/MagicPrompt-Stable-Diffusion_link")

models2 = [gr_Interface_load(f"models/{m}", live=False, preprocess=True, postprocess=False, hf_token=HF_TOKEN) for m in models]
   
def text_it1(inputs, text_gen1=text_gen1):
        go_t1 = text_gen1(inputs)
        return(go_t1)

def set_model(current_model):
    current_model = models[current_model]
    return gr.update(label=(f"{current_model}"))

def send_it1(inputs, model_choice, neg_input, height, width, steps, cfg, seed): #negative_prompt,
        #proc1 = models2[model_choice]
        #output1 = proc1(inputs)
        output1 = gen_fn(model_choice, inputs, neg_input, height, width, steps, cfg, seed)
        #negative_prompt=negative_prompt
        return (output1)

# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_index, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
    from pathlib import Path
    kwargs = {}
    if height is not None and height >= 256: kwargs["height"] = height
    if width is not None and width >= 256: kwargs["width"] = width
    if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
    if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
    noise = ""
    if seed >= 0: kwargs["seed"] = seed
    else:
        rand = randint(1, 500)
        for i in range(rand):
            noise += " "
    task = asyncio.create_task(asyncio.to_thread(models2[model_index].fn,
                               prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {models2[model_index]}")
        if not task.done(): task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
            image = str(Path(png_path).resolve())
        return image
    return None

def gen_fn(model_index, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_index, prompt, nprompt,
                                         height, width, steps, cfg, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {models2[model_index]}")
        result = None
    finally:
        loop.close()
    return result

css="""

.gradio-container {!important; font-family: 'IBM Plex Sans', sans-serif !important;

 text-align: center; max-width: 1200px; margin: 0 auto; !important;}

h1 {font-size: 6em; color: #ffc99f; margin-top: 30px; margin-bottom: 30px;

 text-shadow: 3px 3px 0 rgba(0, 0, 0, 1) !important;}

h3 {color: #ffc99f; !important;}

h4 {display: inline-block; color: #ffffff !important; }

.wrapper img {font-size: 98% !important; white-space: nowrap !important;

 text-align: center !important; display: inline-block !important;color: #ffffff !important;}

.wrapper {color: #ffffff !important;}

.text-gray-500 {color: #ffc99f !important;}

.gr-box {background-image: linear-gradient(#182634, #1e2f40, #254150) !important; border-top-color: #000000 !important;

 border-right-color: #ffffff !important; border-bottom-color: #ffffff !important; border-left-color: #000000 !important;}

"""

with gr.Blocks(theme='John6666/YntecLight', fill_width=True, css=css) as myface:
    gr.HTML(f"""

     <div style="text-align: center; max-width: 1200px; margin: 0 auto;">

              <div>

                <style>

                    h1 {{

                    font-size: 6em;

                    color: #ffc99f;

                    margin-top: 30px;

                    margin-bottom: 30px;

                    text-shadow: 3px 3px 0 rgba(0, 0, 0, 1) !important;

                   }}

                   h3 {{

                    color: #ffc99f; !important;

                   }}

                   h4 {{

                    display: inline-block;

                    color: #ffffff !important;

                   }}

                   .wrapper img {{

                    font-size: 98% !important;

                    white-space: nowrap !important;

                    text-align: center !important;

                    display: inline-block !important;

                    color: #ffffff !important;

                   }}

                   .wrapper {{

                    color: #ffffff !important;

                   }}

                   .gradio-container {{

                   background-image: linear-gradient(#254150, #1e2f40, #182634) !important;

                   color: #ffaa66 !important;

                   font-family: 'IBM Plex Sans', sans-serif !important;

                   }}

                   .text-gray-500 {{

                   color: #ffc99f !important;

                   }}

                   .gr-box {{

    background-image: linear-gradient(#182634, #1e2f40, #254150) !important;

    border-top-color: #000000 !important;

    border-right-color: #ffffff !important;

    border-bottom-color: #ffffff !important;

    border-left-color: #000000 !important;

                   }}

                   .gr-input {{

                   color: #ffc99f; !important;

                   background-color: #254150 !important;

                   }}

                   :root {{

    --neutral-100: #000000 !important;

                   }}

                </style>

                <body>

                <div class="center"><h1>Toy World</h1>

                </div>

                </body>

              </div>

              <p style="margin-bottom: 1px; color: #ffaa66;">

              <h3>Blitz Diffusion - {int(len(models))} Stable Diffusion models, but why? For your enjoyment!</h3></p>

              <br><div class="wrapper">8.1 <img src="https://huggingface.co/Yntec/DucHaitenLofi/resolve/main/NEW.webp" alt="NEW!" style="width:32px;height:16px;">Toys to play with: {new_models} and 6 more!</div>

              <p style="margin-bottom: 1px; font-size: 98%">

              <br><h4>If a model is already loaded each new image takes less than <b>10</b> seconds to generate!</h4></p>

              <p style="margin-bottom: 1px; color: #ffffff;">

              <br><div class="wrapper">Generate 6 images from 1 prompt at the <u><a href="https://huggingface.co/spaces/Yntec/PrintingPress">PrintingPress</a></u>, and use 6 models simultaneusly at <u><a href="https://huggingface.co/spaces/Yntec/diffusion80xx">Diffusion80XX</a></u>!

        </p></p>

            </div>

            """, elem_classes="gr-box")
    with gr.Row():
        with gr.Column(scale=100):
            #Model selection dropdown
            model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index",
                                      value=current_model, interactive=True, elem_classes="gr-box")
    with gr.Row():
        with gr.Column(scale=100):
            with gr.Group():
                magic1 = gr.Textbox(label="Your Prompt", lines=4, elem_classes="gr-box") #Positive
                with gr.Accordion("Advanced", open=False, visible=True):
                    neg_input = gr.Textbox(label='Negative prompt', lines=1, elem_classes="gr-box")
                    with gr.Row():
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes="gr-box")
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes="gr-box")
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0, elem_classes="gr-box")
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0, elem_classes="gr-box")
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1, elem_classes="gr-box")
            run=gr.Button("Generate Image", elem_classes="gr-button")
    with gr.Row():
        with gr.Column():
            output1 = gr.Image(label=(f"{current_model}"), format="png", elem_classes="gr-box")
    with gr.Row():
        with gr.Column(scale=50):
            input_text = gr.Textbox(label="Use this box to extend an idea automagically, by typing some words and clicking Extend Idea", lines=2, elem_classes="gr-box")
            see_prompts = gr.Button("Extend Idea -> overwrite the contents of the `Your Prompt´ box above", elem_classes="gr-button")
            use_short = gr.Button("Copy the contents of this box to the `Your Prompt´ box above", elem_classes="gr-button")
    def short_prompt(inputs):
        return (inputs)
    
    model_name1.change(set_model, inputs=model_name1, outputs=[output1])
    gr.on(
        triggers=[run.click, magic1.submit],
        fn=send_it1,
        inputs=[magic1, model_name1, neg_input, height, width, steps, cfg, seed],
        outputs=[output1],
    )
    use_short.click(short_prompt, inputs=[input_text], outputs=magic1)
    see_prompts.click(text_it1, inputs=[input_text], outputs=magic1)
    
#myface.queue()
myface.launch(inline=True, show_api=False)