Spaces:
Running
Running
File size: 20,173 Bytes
a22eb82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
from torch import nn
import torch.nn.functional as F
import torch
from src.facerender.sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d
from src.facerender.sync_batchnorm import SynchronizedBatchNorm3d as BatchNorm3d
import torch.nn.utils.spectral_norm as spectral_norm
def kp2gaussian(kp, spatial_size, kp_variance):
"""
Transform a keypoint into gaussian like representation
"""
mean = kp['value']
coordinate_grid = make_coordinate_grid(spatial_size, mean.type())
number_of_leading_dimensions = len(mean.shape) - 1
shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
coordinate_grid = coordinate_grid.view(*shape)
repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1)
coordinate_grid = coordinate_grid.repeat(*repeats)
# Preprocess kp shape
shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3)
mean = mean.view(*shape)
mean_sub = (coordinate_grid - mean)
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
return out
def make_coordinate_grid_2d(spatial_size, type):
"""
Create a meshgrid [-1,1] x [-1,1] of given spatial_size.
"""
h, w = spatial_size
x = torch.arange(w).type(type)
y = torch.arange(h).type(type)
x = (2 * (x / (w - 1)) - 1)
y = (2 * (y / (h - 1)) - 1)
yy = y.view(-1, 1).repeat(1, w)
xx = x.view(1, -1).repeat(h, 1)
meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2)
return meshed
def make_coordinate_grid(spatial_size, type):
d, h, w = spatial_size
x = torch.arange(w).type(type)
y = torch.arange(h).type(type)
z = torch.arange(d).type(type)
x = (2 * (x / (w - 1)) - 1)
y = (2 * (y / (h - 1)) - 1)
z = (2 * (z / (d - 1)) - 1)
yy = y.view(1, -1, 1).repeat(d, 1, w)
xx = x.view(1, 1, -1).repeat(d, h, 1)
zz = z.view(-1, 1, 1).repeat(1, h, w)
meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3)
return meshed
class ResBottleneck(nn.Module):
def __init__(self, in_features, stride):
super(ResBottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features//4, kernel_size=1)
self.conv2 = nn.Conv2d(in_channels=in_features//4, out_channels=in_features//4, kernel_size=3, padding=1, stride=stride)
self.conv3 = nn.Conv2d(in_channels=in_features//4, out_channels=in_features, kernel_size=1)
self.norm1 = BatchNorm2d(in_features//4, affine=True)
self.norm2 = BatchNorm2d(in_features//4, affine=True)
self.norm3 = BatchNorm2d(in_features, affine=True)
self.stride = stride
if self.stride != 1:
self.skip = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=1, stride=stride)
self.norm4 = BatchNorm2d(in_features, affine=True)
def forward(self, x):
out = self.conv1(x)
out = self.norm1(out)
out = F.relu(out)
out = self.conv2(out)
out = self.norm2(out)
out = F.relu(out)
out = self.conv3(out)
out = self.norm3(out)
if self.stride != 1:
x = self.skip(x)
x = self.norm4(x)
out += x
out = F.relu(out)
return out
class ResBlock2d(nn.Module):
"""
Res block, preserve spatial resolution.
"""
def __init__(self, in_features, kernel_size, padding):
super(ResBlock2d, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
padding=padding)
self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
padding=padding)
self.norm1 = BatchNorm2d(in_features, affine=True)
self.norm2 = BatchNorm2d(in_features, affine=True)
def forward(self, x):
out = self.norm1(x)
out = F.relu(out)
out = self.conv1(out)
out = self.norm2(out)
out = F.relu(out)
out = self.conv2(out)
out += x
return out
class ResBlock3d(nn.Module):
"""
Res block, preserve spatial resolution.
"""
def __init__(self, in_features, kernel_size, padding):
super(ResBlock3d, self).__init__()
self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
padding=padding)
self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
padding=padding)
self.norm1 = BatchNorm3d(in_features, affine=True)
self.norm2 = BatchNorm3d(in_features, affine=True)
def forward(self, x):
out = self.norm1(x)
out = F.relu(out)
out = self.conv1(out)
out = self.norm2(out)
out = F.relu(out)
out = self.conv2(out)
out += x
return out
class UpBlock2d(nn.Module):
"""
Upsampling block for use in decoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(UpBlock2d, self).__init__()
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups)
self.norm = BatchNorm2d(out_features, affine=True)
def forward(self, x):
out = F.interpolate(x, scale_factor=2)
out = self.conv(out)
out = self.norm(out)
out = F.relu(out)
return out
class UpBlock3d(nn.Module):
"""
Upsampling block for use in decoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(UpBlock3d, self).__init__()
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups)
self.norm = BatchNorm3d(out_features, affine=True)
def forward(self, x):
# out = F.interpolate(x, scale_factor=(1, 2, 2), mode='trilinear')
out = F.interpolate(x, scale_factor=(1, 2, 2))
out = self.conv(out)
out = self.norm(out)
out = F.relu(out)
return out
class DownBlock2d(nn.Module):
"""
Downsampling block for use in encoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(DownBlock2d, self).__init__()
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups)
self.norm = BatchNorm2d(out_features, affine=True)
self.pool = nn.AvgPool2d(kernel_size=(2, 2))
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
out = F.relu(out)
out = self.pool(out)
return out
class DownBlock3d(nn.Module):
"""
Downsampling block for use in encoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(DownBlock3d, self).__init__()
'''
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups, stride=(1, 2, 2))
'''
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups)
self.norm = BatchNorm3d(out_features, affine=True)
self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2))
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
out = F.relu(out)
out = self.pool(out)
return out
class SameBlock2d(nn.Module):
"""
Simple block, preserve spatial resolution.
"""
def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False):
super(SameBlock2d, self).__init__()
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features,
kernel_size=kernel_size, padding=padding, groups=groups)
self.norm = BatchNorm2d(out_features, affine=True)
if lrelu:
self.ac = nn.LeakyReLU()
else:
self.ac = nn.ReLU()
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
out = self.ac(out)
return out
class Encoder(nn.Module):
"""
Hourglass Encoder
"""
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
super(Encoder, self).__init__()
down_blocks = []
for i in range(num_blocks):
down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)),
min(max_features, block_expansion * (2 ** (i + 1))),
kernel_size=3, padding=1))
self.down_blocks = nn.ModuleList(down_blocks)
def forward(self, x):
outs = [x]
for down_block in self.down_blocks:
outs.append(down_block(outs[-1]))
return outs
class Decoder(nn.Module):
"""
Hourglass Decoder
"""
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
super(Decoder, self).__init__()
up_blocks = []
for i in range(num_blocks)[::-1]:
in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
out_filters = min(max_features, block_expansion * (2 ** i))
up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))
self.up_blocks = nn.ModuleList(up_blocks)
# self.out_filters = block_expansion
self.out_filters = block_expansion + in_features
self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1)
self.norm = BatchNorm3d(self.out_filters, affine=True)
def forward(self, x):
out = x.pop()
# for up_block in self.up_blocks[:-1]:
for up_block in self.up_blocks:
out = up_block(out)
skip = x.pop()
out = torch.cat([out, skip], dim=1)
# out = self.up_blocks[-1](out)
out = self.conv(out)
out = self.norm(out)
out = F.relu(out)
return out
class Hourglass(nn.Module):
"""
Hourglass architecture.
"""
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
super(Hourglass, self).__init__()
self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
self.out_filters = self.decoder.out_filters
def forward(self, x):
return self.decoder(self.encoder(x))
class KPHourglass(nn.Module):
"""
Hourglass architecture.
"""
def __init__(self, block_expansion, in_features, reshape_features, reshape_depth, num_blocks=3, max_features=256):
super(KPHourglass, self).__init__()
self.down_blocks = nn.Sequential()
for i in range(num_blocks):
self.down_blocks.add_module('down'+ str(i), DownBlock2d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)),
min(max_features, block_expansion * (2 ** (i + 1))),
kernel_size=3, padding=1))
in_filters = min(max_features, block_expansion * (2 ** num_blocks))
self.conv = nn.Conv2d(in_channels=in_filters, out_channels=reshape_features, kernel_size=1)
self.up_blocks = nn.Sequential()
for i in range(num_blocks):
in_filters = min(max_features, block_expansion * (2 ** (num_blocks - i)))
out_filters = min(max_features, block_expansion * (2 ** (num_blocks - i - 1)))
self.up_blocks.add_module('up'+ str(i), UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))
self.reshape_depth = reshape_depth
self.out_filters = out_filters
def forward(self, x):
out = self.down_blocks(x)
out = self.conv(out)
bs, c, h, w = out.shape
out = out.view(bs, c//self.reshape_depth, self.reshape_depth, h, w)
out = self.up_blocks(out)
return out
class AntiAliasInterpolation2d(nn.Module):
"""
Band-limited downsampling, for better preservation of the input signal.
"""
def __init__(self, channels, scale):
super(AntiAliasInterpolation2d, self).__init__()
sigma = (1 / scale - 1) / 2
kernel_size = 2 * round(sigma * 4) + 1
self.ka = kernel_size // 2
self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka
kernel_size = [kernel_size, kernel_size]
sigma = [sigma, sigma]
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid(
[
torch.arange(size, dtype=torch.float32)
for size in kernel_size
]
)
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2))
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer('weight', kernel)
self.groups = channels
self.scale = scale
inv_scale = 1 / scale
self.int_inv_scale = int(inv_scale)
def forward(self, input):
if self.scale == 1.0:
return input
out = F.pad(input, (self.ka, self.kb, self.ka, self.kb))
out = F.conv2d(out, weight=self.weight, groups=self.groups)
out = out[:, :, ::self.int_inv_scale, ::self.int_inv_scale]
return out
class SPADE(nn.Module):
def __init__(self, norm_nc, label_nc):
super().__init__()
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
nhidden = 128
self.mlp_shared = nn.Sequential(
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
nn.ReLU())
self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
def forward(self, x, segmap):
normalized = self.param_free_norm(x)
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
actv = self.mlp_shared(segmap)
gamma = self.mlp_gamma(actv)
beta = self.mlp_beta(actv)
out = normalized * (1 + gamma) + beta
return out
class SPADEResnetBlock(nn.Module):
def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1):
super().__init__()
# Attributes
self.learned_shortcut = (fin != fout)
fmiddle = min(fin, fout)
self.use_se = use_se
# create conv layers
self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation)
self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation)
if self.learned_shortcut:
self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
# apply spectral norm if specified
if 'spectral' in norm_G:
self.conv_0 = spectral_norm(self.conv_0)
self.conv_1 = spectral_norm(self.conv_1)
if self.learned_shortcut:
self.conv_s = spectral_norm(self.conv_s)
# define normalization layers
self.norm_0 = SPADE(fin, label_nc)
self.norm_1 = SPADE(fmiddle, label_nc)
if self.learned_shortcut:
self.norm_s = SPADE(fin, label_nc)
def forward(self, x, seg1):
x_s = self.shortcut(x, seg1)
dx = self.conv_0(self.actvn(self.norm_0(x, seg1)))
dx = self.conv_1(self.actvn(self.norm_1(dx, seg1)))
out = x_s + dx
return out
def shortcut(self, x, seg1):
if self.learned_shortcut:
x_s = self.conv_s(self.norm_s(x, seg1))
else:
x_s = x
return x_s
def actvn(self, x):
return F.leaky_relu(x, 2e-1)
class audio2image(nn.Module):
def __init__(self, generator, kp_extractor, he_estimator_video, he_estimator_audio, train_params):
super().__init__()
# Attributes
self.generator = generator
self.kp_extractor = kp_extractor
self.he_estimator_video = he_estimator_video
self.he_estimator_audio = he_estimator_audio
self.train_params = train_params
def headpose_pred_to_degree(self, pred):
device = pred.device
idx_tensor = [idx for idx in range(66)]
idx_tensor = torch.FloatTensor(idx_tensor).to(device)
pred = F.softmax(pred)
degree = torch.sum(pred*idx_tensor, 1) * 3 - 99
return degree
def get_rotation_matrix(self, yaw, pitch, roll):
yaw = yaw / 180 * 3.14
pitch = pitch / 180 * 3.14
roll = roll / 180 * 3.14
roll = roll.unsqueeze(1)
pitch = pitch.unsqueeze(1)
yaw = yaw.unsqueeze(1)
roll_mat = torch.cat([torch.ones_like(roll), torch.zeros_like(roll), torch.zeros_like(roll),
torch.zeros_like(roll), torch.cos(roll), -torch.sin(roll),
torch.zeros_like(roll), torch.sin(roll), torch.cos(roll)], dim=1)
roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3)
pitch_mat = torch.cat([torch.cos(pitch), torch.zeros_like(pitch), torch.sin(pitch),
torch.zeros_like(pitch), torch.ones_like(pitch), torch.zeros_like(pitch),
-torch.sin(pitch), torch.zeros_like(pitch), torch.cos(pitch)], dim=1)
pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3)
yaw_mat = torch.cat([torch.cos(yaw), -torch.sin(yaw), torch.zeros_like(yaw),
torch.sin(yaw), torch.cos(yaw), torch.zeros_like(yaw),
torch.zeros_like(yaw), torch.zeros_like(yaw), torch.ones_like(yaw)], dim=1)
yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3)
rot_mat = torch.einsum('bij,bjk,bkm->bim', roll_mat, pitch_mat, yaw_mat)
return rot_mat
def keypoint_transformation(self, kp_canonical, he):
kp = kp_canonical['value'] # (bs, k, 3)
yaw, pitch, roll = he['yaw'], he['pitch'], he['roll']
t, exp = he['t'], he['exp']
yaw = self.headpose_pred_to_degree(yaw)
pitch = self.headpose_pred_to_degree(pitch)
roll = self.headpose_pred_to_degree(roll)
rot_mat = self.get_rotation_matrix(yaw, pitch, roll) # (bs, 3, 3)
# keypoint rotation
kp_rotated = torch.einsum('bmp,bkp->bkm', rot_mat, kp)
# keypoint translation
t = t.unsqueeze_(1).repeat(1, kp.shape[1], 1)
kp_t = kp_rotated + t
# add expression deviation
exp = exp.view(exp.shape[0], -1, 3)
kp_transformed = kp_t + exp
return {'value': kp_transformed}
def forward(self, source_image, target_audio):
pose_source = self.he_estimator_video(source_image)
pose_generated = self.he_estimator_audio(target_audio)
kp_canonical = self.kp_extractor(source_image)
kp_source = self.keypoint_transformation(kp_canonical, pose_source)
kp_transformed_generated = self.keypoint_transformation(kp_canonical, pose_generated)
generated = self.generator(source_image, kp_source=kp_source, kp_driving=kp_transformed_generated)
return generated |