Spaces:
Runtime error
Runtime error
File size: 12,851 Bytes
990e2a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import networkx as nx
import numpy as np
import argparse
import os
from tqdm import tqdm
import ray
from check_valid import check_step_valid_soild, load_data_with_prefix
def real2bit(data, n_bits=8, min_range=-1, max_range=1):
"""Convert vertices in [-1., 1.] to discrete values in [0, n_bits**2 - 1]."""
range_quantize = 2 ** n_bits - 1
data_quantize = (data - min_range) * range_quantize / (max_range - min_range)
data_quantize = np.clip(data_quantize, a_min=0, a_max=range_quantize) # clip values
return data_quantize.astype(int)
def build_graph(faces, faces_adj, n_bit=4):
# faces1 and faces2 are np.array of shape (n_faces, n_points, n_points, 3)
# faces_adj1 and faces_adj2 are lists of (face_idx, face_idx) adjacency, ex. [[0, 1], [1, 2]]
faces_bits = real2bit(faces, n_bits=n_bit)
"""Build a graph from a shape."""
G = nx.Graph()
for face_idx, face_bit in enumerate(faces_bits):
face_bit = face_bit.reshape(-1, 3)
face_bit_ordered = face_bit[np.lexsort((face_bit[:, 0], face_bit[:, 1], face_bit[:, 2]))]
G.add_node(face_idx, shape_geometry=face_bit_ordered)
for pair in faces_adj:
G.add_edge(pair[0], pair[1])
return G
def is_graph_identical(graph1, graph2):
"""Check if two shapes are identical."""
# Check if the two graphs are isomorphic considering node attributes
return nx.is_isomorphic(
graph1, graph2,
node_match=lambda n1, n2: np.array_equal(n1['shape_geometry'], n2['shape_geometry'])
)
def is_graph_identical_batch(graph_pair_list):
is_identical_list = []
for graph1, graph2 in graph_pair_list:
is_identical = is_graph_identical(graph1, graph2)
is_identical_list.append(is_identical)
return is_identical_list
is_graph_identical_remote = ray.remote(is_graph_identical_batch)
def find_connected_components(matrix):
N = len(matrix)
visited = [False] * N
components = []
def dfs(idx, component):
stack = [idx]
while stack:
node = stack.pop()
if not visited[node]:
visited[node] = True
component.append(node)
for neighbor in range(N):
if matrix[node][neighbor] and not visited[neighbor]:
stack.append(neighbor)
for i in range(N):
if not visited[i]:
component = []
dfs(i, component)
components.append(component)
return components
def compute_gen_unique(graph_list, is_use_ray=False, batch_size=100000):
N = len(graph_list)
unique_graph_idx = list(range(N))
pair_0, pair_1 = np.triu_indices(N, k=1)
check_pairs = list(zip(pair_0, pair_1))
deduplicate_matrix = np.zeros((N, N), dtype=bool)
if not is_use_ray:
for idx1, idx2 in tqdm(check_pairs):
is_identical = is_graph_identical(graph_list[idx1], graph_list[idx2])
if is_identical:
unique_graph_idx.remove(idx2) if idx2 in unique_graph_idx else None
deduplicate_matrix[idx1, idx2] = True
deduplicate_matrix[idx2, idx1] = True
else:
ray.init()
N_batch = len(check_pairs) // batch_size
futures = []
for i in tqdm(range(N_batch)):
batch_pairs = check_pairs[i * batch_size: (i + 1) * batch_size]
batch_graph_pair = [(graph_list[idx1], graph_list[idx2]) for idx1, idx2 in batch_pairs]
futures.append(is_graph_identical_remote.remote(batch_graph_pair))
results = ray.get(futures)
for batch_idx in tqdm(range(N_batch)):
for idx, is_identical in enumerate(results[batch_idx]):
if not is_identical:
continue
idx1, idx2 = check_pairs[batch_idx * batch_size + idx]
deduplicate_matrix[idx1, idx2] = True
deduplicate_matrix[idx2, idx1] = True
if idx2 in unique_graph_idx:
unique_graph_idx.remove(idx2)
ray.shutdown()
unique = len(unique_graph_idx)
print(f"Unique: {unique}/{N}")
unique_ratio = unique / N
return unique_ratio, deduplicate_matrix
def compute_gen_novel(gen_graph_list, train_graph_list, is_use_ray=False, batch_size=100000):
M, N = len(gen_graph_list), len(train_graph_list)
deduplicate_matrix = np.zeros((M, N), dtype=bool)
pair_0, pair_1 = np.triu_indices_from(deduplicate_matrix, k=1)
check_pairs = list(zip(pair_0, pair_1))
non_novel_graph_idx = np.zeros(M, dtype=bool)
if not is_use_ray:
for idx1, idx2 in tqdm(check_pairs):
if non_novel_graph_idx[idx1]:
continue
is_identical = is_graph_identical(gen_graph_list[idx1], train_graph_list[idx2])
if is_identical:
non_novel_graph_idx[idx1] = True
deduplicate_matrix[idx1, idx2] = True
else:
ray.init()
N_batch = len(check_pairs) // batch_size
futures = []
for i in tqdm(range(N_batch)):
batch_pairs = check_pairs[i * batch_size: (i + 1) * batch_size]
batch_graph_pair = [(gen_graph_list[idx1], train_graph_list[idx2]) for idx1, idx2 in batch_pairs]
futures.append(is_graph_identical_remote.remote(batch_graph_pair))
results = ray.get(futures)
for batch_idx in tqdm(range(N_batch)):
for idx, is_identical in enumerate(results[batch_idx]):
if not is_identical:
continue
idx1, idx2 = check_pairs[batch_idx * batch_size + idx]
deduplicate_matrix[idx1, idx2] = True
non_novel_graph_idx[idx1] = True
ray.shutdown()
novel = M - np.sum(non_novel_graph_idx)
print(f"Novel: {novel}/{M}")
novel_ratio = novel / M
return novel_ratio, deduplicate_matrix
def test_check():
sample = np.random.rand(3, 32, 32, 3)
face1 = sample[[0, 1, 2]]
face2 = sample[[0, 2, 1]]
faces_adj1 = [[0, 1]]
faces_adj2 = [[0, 2]]
graph1 = build_graph(face1, faces_adj1)
graph2 = build_graph(face2, faces_adj2)
is_identical = is_graph_identical(graph1, graph2)
# 判断图是否相等
print("Graphs are equal" if is_identical else "Graphs are not equal")
def load_data_from_npz(data_npz_file):
data_npz = np.load(data_npz_file, allow_pickle=True)
# Brepgen
if 'face_edge_adj' in data_npz:
faces = data_npz['pred_face']
face_edge_adj = data_npz['face_edge_adj']
faces_adj_pair = []
N = face_edge_adj.shape[0]
for face_idx1 in range(N):
for face_idx2 in range(face_idx1 + 1, N):
face_edges1 = face_edge_adj[face_idx1]
face_edges2 = face_edge_adj[face_idx2]
if sorted((face_idx1, face_idx2)) in faces_adj_pair:
continue
if len(set(face_edges1).intersection(set(face_edges2))) > 0:
faces_adj_pair.append(sorted((face_idx1, face_idx2)))
return faces, faces_adj_pair
# Ours
if 'sample_points_faces' in data_npz and 'edge_face_connectivity' in data_npz:
face_points = data_npz['sample_points_faces'] # Face sample points (num_faces*20*20*3)
edge_points = data_npz['sample_points_lines'] # Edge sample points (num_lines*20*3)
edge_face_connectivity = data_npz['edge_face_connectivity'] # (num_intersection, (id_edge, id_face1, id_face2))
elif 'pred_face' in data_npz and 'pred_edge_face_connectivity' in data_npz:
face_points = data_npz['pred_face']
edge_points = data_npz['pred_edge']
edge_face_connectivity = data_npz['pred_edge_face_connectivity']
else:
raise ValueError("Invalid data format")
faces_adj_pair = []
for edge_idx, face_idx1, face_idx2 in edge_face_connectivity:
faces_adj_pair.append([face_idx1, face_idx2])
return face_points, faces_adj_pair
def load_and_build_graph(data_npz_file_list, gen_post_data_root=None, n_bit=4):
gen_graph_list = []
prefix_list = []
for data_npz_file in data_npz_file_list:
folder_name = os.path.basename(os.path.dirname(data_npz_file))
if gen_post_data_root:
step_file_list = load_data_with_prefix(os.path.join(gen_post_data_root, folder_name), ".step")
if len(step_file_list) == 0:
continue
if not check_step_valid_soild(step_file_list[0]):
continue
prefix_list.append(folder_name)
faces, faces_adj_pair = load_data_from_npz(data_npz_file)
graph = build_graph(faces, faces_adj_pair, n_bit)
gen_graph_list.append(graph)
return gen_graph_list, prefix_list
load_and_build_graph_remote = ray.remote(load_and_build_graph)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--fake", type=str, required=True)
parser.add_argument("--fake_post", type=str, required=False)
parser.add_argument("--train_root", type=str, required=False)
parser.add_argument("--n_bit", type=int, default=4)
parser.add_argument("--use_ray", action='store_true')
parser.add_argument("--load_batch_size", type=int, default=400)
parser.add_argument("--compute_batch_size", type=int, default=200000)
parser.add_argument("--txt", type=str, default=None)
parser.add_argument("--num_cpus", type=int, default=16)
args = parser.parse_args()
gen_data_root = args.fake
gen_post_data_root = args.fake_post
train_data_root = args.train_root
is_use_ray = args.use_ray
n_bit = args.n_bit
load_batch_size = args.load_batch_size
compute_batch_size = args.compute_batch_size
folder_list_txt = args.txt
num_cpus = args.num_cpus
# Load all the generated data files
print("Loading generated data files...")
data_npz_file_list = load_data_with_prefix(gen_data_root, 'data.npz')
if is_use_ray:
ray.init(num_cpus=num_cpus)
futures = []
gen_graph_list = []
gen_prefix_list = []
for i in tqdm(range(0, len(data_npz_file_list), load_batch_size)):
batch_data_npz_file_list = data_npz_file_list[i: i + load_batch_size]
futures.append(load_and_build_graph_remote.remote(batch_data_npz_file_list, gen_post_data_root, n_bit))
for future in tqdm(futures):
result = ray.get(future)
gen_graph_list_batch, gen_prefix_list_batch = result
gen_graph_list.extend(gen_graph_list_batch)
gen_prefix_list.extend(gen_prefix_list_batch)
ray.shutdown()
else:
gen_graph_list, gen_prefix_list = load_and_build_graph(data_npz_file_list, gen_post_data_root, n_bit)
print(f"Loaded {len(gen_graph_list)} generated data files")
print("Loading training data files...")
data_npz_file_list = load_data_with_prefix(train_data_root, 'data.npz', folder_list_txt=folder_list_txt)
load_batch_size = load_batch_size * 5
if is_use_ray:
ray.init(num_cpus=num_cpus)
futures = []
train_graph_list = []
train_prefix_list = []
for i in tqdm(range(0, len(data_npz_file_list), load_batch_size)):
batch_data_npz_file_list = data_npz_file_list[i: i + load_batch_size]
futures.append(load_and_build_graph_remote.remote(batch_data_npz_file_list, None, n_bit))
for future in tqdm(futures):
result = ray.get(future)
train_graph_list_batch, train_prefix_list_batch = result
train_graph_list.extend(train_graph_list_batch)
train_prefix_list.extend(train_prefix_list_batch)
ray.shutdown()
else:
train_graph_list, train_prefix_list = load_and_build_graph(data_npz_file_list, None, n_bit)
print(f"Loaded {len(train_graph_list)} training data files")
print("Computing Unique ratio...")
unique_ratio, deduplicate_matrix = compute_gen_unique(gen_graph_list, is_use_ray, compute_batch_size)
print(f"Unique ratio: {unique_ratio}")
deduplicate_components_txt = gen_data_root + f"_deduplicate_components_{n_bit}bit.txt"
fp = open(deduplicate_components_txt, "w")
print(f"Unique ratio: {unique_ratio}", file=fp)
deduplicate_components = find_connected_components(deduplicate_matrix)
for component in deduplicate_components:
if len(component) > 1:
component = [gen_prefix_list[idx] for idx in component]
print(f"Component: {component}", file=fp)
print(f"Deduplicate components are saved to {deduplicate_components_txt}")
print("Computing Novel ratio...")
novel_ratio = compute_gen_novel(gen_graph_list, train_graph_list, is_use_ray, compute_batch_size)
print(f"Novel ratio: {novel_ratio}")
print("Done")
if __name__ == "__main__":
main()
|