File size: 68,278 Bytes
821a6d5
0c57d8c
 
e2e3edb
efd4b9a
a6653e4
a3da8d7
8f8a974
efd4b9a
 
 
 
 
 
4e05fad
efd4b9a
8f8a974
 
 
 
 
c23ec23
0c40af7
 
a3da8d7
8f8a974
ed51a72
e2e3edb
a3da8d7
 
 
 
 
 
 
ed51a72
 
 
 
7bc191d
 
 
 
e2e3edb
f1eb3d1
e2e3edb
 
 
 
0c57d8c
 
a3da8d7
 
 
 
4e05fad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bd99fd
 
 
 
 
 
 
 
 
 
053323f
0c57d8c
053323f
 
 
 
0c57d8c
8f8a974
0c57d8c
 
 
efd4b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8a974
efd4b9a
8f8a974
 
 
efd4b9a
8f8a974
 
efd4b9a
 
8f8a974
efd4b9a
 
 
8f8a974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e3edb
8f8a974
 
e2e3edb
 
 
 
 
 
 
 
 
 
8f8a974
 
 
 
 
 
 
e2e3edb
8f8a974
 
e2e3edb
8f8a974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e3edb
 
0c57d8c
8f8a974
 
0c57d8c
efd4b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e3edb
 
0c57d8c
 
e2e3edb
 
0c57d8c
 
e2e3edb
 
8f8a974
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
9365383
 
 
 
 
 
 
b8fa141
9365383
 
 
 
 
 
 
 
 
8f8a974
e2e3edb
8f8a974
 
e2e3edb
 
8f8a974
 
e2e3edb
 
 
 
 
0c40af7
8f8a974
e2e3edb
 
 
 
b6715cb
0c57d8c
 
8f8a974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c57d8c
8f8a974
98f6657
8f8a974
65fa164
0c40af7
 
98f6657
a6653e4
 
 
 
 
0c57d8c
 
a6653e4
0c57d8c
 
 
 
 
8f8a974
98f6657
8f8a974
65fa164
0c40af7
 
98f6657
a6653e4
 
 
 
 
 
 
 
0c57d8c
 
 
 
 
8f8a974
0c57d8c
 
98f6657
8f8a974
65fa164
0c40af7
 
98f6657
a6653e4
 
0c57d8c
 
 
 
 
 
 
 
e2e3edb
0c57d8c
e2e3edb
 
0c57d8c
 
98f6657
3c5e6ea
 
691c505
3c5e6ea
 
691c505
65fa164
0c40af7
 
98f6657
3c5e6ea
a6653e4
 
 
1e68e94
 
3c5e6ea
1e68e94
 
 
a6653e4
 
1e68e94
 
e2e3edb
a6653e4
0c57d8c
 
e2e3edb
 
 
0c57d8c
a3da8d7
98f6657
a3da8d7
 
a6653e4
0c40af7
 
98f6657
a6653e4
 
 
 
 
a3da8d7
 
a6653e4
 
 
 
 
 
 
0c57d8c
98f6657
 
 
 
 
 
 
 
 
65fa164
0c40af7
98f6657
a6653e4
 
 
 
a3da8d7
 
a6653e4
 
 
 
 
0c57d8c
a6653e4
 
0c57d8c
 
 
e2e3edb
 
 
 
 
 
0c40af7
 
e2e3edb
 
 
efd4b9a
 
 
e2e3edb
0c57d8c
 
e2e3edb
 
 
 
 
 
 
8f8a974
e2e3edb
8f8a974
e2e3edb
 
 
0c57d8c
 
e2e3edb
0c57d8c
 
 
 
 
 
ed51a72
0c57d8c
 
 
98f6657
 
 
0c57d8c
 
 
 
 
98f6657
 
3c5e6ea
0c40af7
0c57d8c
a6653e4
 
 
 
 
 
 
 
 
 
 
 
0c57d8c
 
3c5e6ea
8f8a974
3c5e6ea
 
 
 
 
e2e3edb
 
 
 
 
 
 
 
 
 
 
0c57d8c
e2e3edb
 
 
 
0c57d8c
e2e3edb
 
 
0c57d8c
 
e2e3edb
0c57d8c
 
 
 
 
 
 
 
 
 
 
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
8f8a974
e2e3edb
 
8f8a974
e2e3edb
8f8a974
e2e3edb
8f8a974
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c40af7
 
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3da8d7
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
 
a3da8d7
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3da8d7
ffc6c73
a3da8d7
 
 
 
 
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e05fad
e2e3edb
 
4e05fad
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e05fad
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
 
7bc191d
 
 
e2e3edb
 
7bc191d
 
09e90a7
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffc6c73
157f6b5
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
ffc6c73
 
e2e3edb
 
 
 
 
 
 
ffc6c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8a974
 
 
 
ffc6c73
8f8a974
 
 
ffc6c73
 
 
 
 
 
 
8f8a974
ffc6c73
 
8f8a974
 
 
 
 
ffc6c73
8f8a974
ffc6c73
 
 
 
 
 
 
 
8f8a974
 
ffc6c73
0c57d8c
 
84b98e0
 
0c57d8c
84b98e0
8f8a974
0c57d8c
98f6657
0c57d8c
 
8f8a974
0c57d8c
ed6cc2f
0c57d8c
 
3c5e6ea
e2e3edb
0c57d8c
 
e2e3edb
0c57d8c
e2e3edb
0c57d8c
e2e3edb
0c57d8c
e2e3edb
0c57d8c
e2e3edb
 
0c57d8c
 
efd4b9a
 
a83e579
efd4b9a
 
ffc6c73
1e68e94
ffc6c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc191d
ffc6c73
 
 
 
7bc191d
ffc6c73
 
 
 
 
 
 
 
 
 
 
 
a3da8d7
efd4b9a
ed51a72
 
 
efd4b9a
a3da8d7
 
efd4b9a
98f6657
 
 
 
 
3c5e6ea
7bc191d
98f6657
ffc6c73
 
 
7bc191d
ffc6c73
 
 
 
efd4b9a
ffc6c73
efd4b9a
 
 
 
 
ffc6c73
efd4b9a
 
 
 
 
 
 
ffc6c73
 
ed51a72
 
efd4b9a
 
 
 
 
 
c23ec23
efd4b9a
 
ed51a72
efd4b9a
ed51a72
 
98f6657
ed51a72
 
efd4b9a
 
c23ec23
efd4b9a
 
 
 
ffc6c73
c23ec23
efd4b9a
 
 
 
 
 
 
 
 
8f8a974
ed51a72
 
 
 
efd4b9a
ffc6c73
ed51a72
 
 
efd4b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3da8d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3da8d7
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
691c505
e2e3edb
 
 
 
 
 
 
691c505
e2e3edb
 
 
691c505
e2e3edb
 
 
0c57d8c
 
 
 
 
 
 
 
a67f51e
0c57d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a67f51e
0c57d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e3edb
182cd3b
 
 
 
e2e3edb
 
 
 
 
 
 
182cd3b
 
 
 
e2e3edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c57d8c
 
182cd3b
0c57d8c
182cd3b
 
0c57d8c
182cd3b
 
0c57d8c
 
 
 
 
 
 
 
 
 
 
182cd3b
0c57d8c
182cd3b
0c57d8c
 
 
 
 
 
 
 
 
84b98e0
a67f51e
0c57d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84b98e0
 
0c57d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
84b98e0
0c57d8c
 
84b98e0
0c57d8c
 
 
 
 
 
84b98e0
0c57d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84b98e0
0c57d8c
84b98e0
 
0c57d8c
84b98e0
0c57d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84b98e0
0c57d8c
84b98e0
0c57d8c
 
 
3c5e6ea
 
 
 
 
0c57d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3da8d7
0c57d8c
98f6657
a3da8d7
 
1e68e94
0c57d8c
a6653e4
 
 
0c40af7
 
a6653e4
 
 
 
98f6657
a6653e4
65fa164
8f8a974
 
 
 
 
 
 
 
 
 
182cd3b
8f8a974
 
 
 
 
 
 
 
 
 
 
 
182cd3b
8f8a974
 
 
 
 
 
 
 
 
 
 
 
182cd3b
8f8a974
 
 
 
 
 
 
 
 
 
 
 
182cd3b
8f8a974
 
 
 
 
 
 
 
 
 
 
 
182cd3b
8f8a974
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
import spaces
import json
import gradio as gr
import os
import re
from pathlib import Path
from PIL import Image
import numpy as np
import shutil
import requests
from requests.adapters import HTTPAdapter
from urllib3.util import Retry
import urllib.parse
import pandas as pd
from typing import Any
from huggingface_hub import HfApi, HfFolder, hf_hub_download, snapshot_download
from translatepy import Translator
from unidecode import unidecode
import copy
from datetime import datetime, timezone, timedelta
FILENAME_TIMEZONE = timezone(timedelta(hours=9)) # JST


from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
    HF_MODEL_USER_EX, HF_MODEL_USER_LIKES, DIFFUSERS_FORMAT_LORAS,
    DIRECTORY_LORAS, HF_READ_TOKEN, HF_TOKEN, CIVITAI_API_KEY)


MODEL_TYPE_DICT = {
    "diffusers:StableDiffusionPipeline": "SD 1.5",
    "diffusers:StableDiffusionXLPipeline": "SDXL",
    "diffusers:FluxPipeline": "FLUX",
}


def get_user_agent():
    return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'


def to_list(s):
    return [x.strip() for x in s.split(",") if not s == ""]


def list_uniq(l):
    return sorted(set(l), key=l.index)


def list_sub(a, b):
    return [e for e in a if e not in b]


def is_repo_name(s):
    return re.fullmatch(r'^[^/]+?/[^/]+?$', s)


DEFAULT_STATE = {
    "show_diffusers_model_list_detail": False,
}


def get_state(state: dict, key: str):
    if key in state.keys(): return state[key]
    elif key in DEFAULT_STATE.keys():
        print(f"State '{key}' not found. Use dedault value.")
        return DEFAULT_STATE[key]
    else:
        print(f"State '{key}' not found.")
        return None


def set_state(state: dict, key: str, value: Any):
    state[key] = value


translator = Translator()
def translate_to_en(input: str):
    try:
        output = str(translator.translate(input, 'English'))
    except Exception as e:
        output = input
        print(e)
    return output


def get_local_model_list(dir_path):
    model_list = []
    valid_extensions = ('.ckpt', '.pt', '.pth', '.safetensors', '.bin')
    for file in Path(dir_path).glob("*"):
        if file.suffix in valid_extensions:
            file_path = str(Path(f"{dir_path}/{file.name}"))
            model_list.append(file_path)
            #print('\033[34mFILE: ' + file_path + '\033[0m')
    return model_list


def get_token():
    try:
        token = HfFolder.get_token()
    except Exception:
        token = ""
    return token


def set_token(token):
    try:
        HfFolder.save_token(token)
    except Exception:
        print(f"Error: Failed to save token.")


set_token(HF_TOKEN)


def split_hf_url(url: str):
    try:
        s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0])
        if len(s) < 4: return "", "", "", ""
        repo_id = s[1]
        repo_type = "dataset" if s[0] == "datasets" else "model"
        subfolder = urllib.parse.unquote(s[2]) if s[2] else None
        filename = urllib.parse.unquote(s[3])
        return repo_id, filename, subfolder, repo_type
    except Exception as e:
        print(e)


def download_hf_file(directory, url, force_filename="", hf_token="", progress=gr.Progress(track_tqdm=True)):
    repo_id, filename, subfolder, repo_type = split_hf_url(url)
    kwargs = {}
    if subfolder is not None: kwargs["subfolder"] = subfolder
    if force_filename: kwargs["force_filename"] = force_filename
    try:
        print(f"Start downloading: {url} to {directory}")
        path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token, **kwargs)
        return path
    except Exception as e:
        print(f"Download failed: {url} {e}")
        return None


USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'


def request_json_data(url):
    model_version_id = url.split('/')[-1]
    if "?modelVersionId=" in model_version_id:
        match = re.search(r'modelVersionId=(\d+)', url)
        model_version_id = match.group(1)

    endpoint_url = f"https://civitai.com/api/v1/model-versions/{model_version_id}"

    params = {}
    headers = {'User-Agent': USER_AGENT, 'content-type': 'application/json'}
    session = requests.Session()
    retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
    session.mount("https://", HTTPAdapter(max_retries=retries))

    try:
        result = session.get(endpoint_url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
        result.raise_for_status()
        json_data = result.json()
        return json_data if json_data else None
    except Exception as e:
        print(f"Error: {e}")
        return None


class ModelInformation:
    def __init__(self, json_data):
        self.model_version_id = json_data.get("id", "")
        self.model_id = json_data.get("modelId", "")
        self.download_url = json_data.get("downloadUrl", "")
        self.model_url = f"https://civitai.com/models/{self.model_id}?modelVersionId={self.model_version_id}"
        self.filename_url = next(
            (v.get("name", "") for v in json_data.get("files", []) if str(self.model_version_id) in v.get("downloadUrl", "")), ""
        )
        self.filename_url = self.filename_url if self.filename_url else ""
        self.description = json_data.get("description", "")
        if self.description is None: self.description = ""
        self.model_name = json_data.get("model", {}).get("name", "")
        self.model_type = json_data.get("model", {}).get("type", "")
        self.nsfw = json_data.get("model", {}).get("nsfw", False)
        self.poi = json_data.get("model", {}).get("poi", False)
        self.images = [img.get("url", "") for img in json_data.get("images", [])]
        self.example_prompt = json_data.get("trainedWords", [""])[0] if json_data.get("trainedWords") else ""
        self.original_json = copy.deepcopy(json_data)


def retrieve_model_info(url):
    json_data = request_json_data(url)
    if not json_data:
        return None
    model_descriptor = ModelInformation(json_data)
    return model_descriptor


def download_things(directory, url, hf_token="", civitai_api_key="", romanize=False):
    hf_token = get_token()
    url = url.strip()
    downloaded_file_path = None

    if "drive.google.com" in url:
        original_dir = os.getcwd()
        os.chdir(directory)
        os.system(f"gdown --fuzzy {url}")
        os.chdir(original_dir)
    elif "huggingface.co" in url:
        url = url.replace("?download=true", "")
        # url = urllib.parse.quote(url, safe=':/')  # fix encoding
        if "/blob/" in url:
            url = url.replace("/blob/", "/resolve/")

        filename = unidecode(url.split('/')[-1]) if romanize else url.split('/')[-1]

        download_hf_file(directory, url, filename, hf_token)

        downloaded_file_path = os.path.join(directory, filename)

    elif "civitai.com" in url:

        if not civitai_api_key:
            print("\033[91mYou need an API key to download Civitai models.\033[0m")

        model_profile = retrieve_model_info(url)
        if model_profile.download_url and model_profile.filename_url:
            url = model_profile.download_url
            filename = unidecode(model_profile.filename_url) if romanize else model_profile.filename_url
        else:
            if "?" in url:
                url = url.split("?")[0]
            filename = ""

        url_dl = url + f"?token={civitai_api_key}"
        print(f"Filename: {filename}")

        param_filename = ""
        if filename:
            param_filename = f"-o '{filename}'"

        aria2_command = (
            f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 '
            f'-k 1M -s 16 -d "{directory}" {param_filename} "{url_dl}"'
        )
        os.system(aria2_command)

        if param_filename and os.path.exists(os.path.join(directory, filename)):
            downloaded_file_path = os.path.join(directory, filename)

    else:
        os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")

    return downloaded_file_path


def get_download_file(temp_dir, url, civitai_key="", progress=gr.Progress(track_tqdm=True)):
    if not "http" in url and is_repo_name(url) and not Path(url).exists():
        print(f"Use HF Repo: {url}")
        new_file = url
    elif not "http" in url and Path(url).exists():
        print(f"Use local file: {url}")
        new_file = url
    elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
        print(f"File to download alreday exists: {url}")
        new_file = f"{temp_dir}/{url.split('/')[-1]}"
    else:
        print(f"Start downloading: {url}")
        before = get_local_model_list(temp_dir)
        try:
            download_things(temp_dir, url.strip(), HF_TOKEN, civitai_key)
        except Exception:
            print(f"Download failed: {url}")
            return ""
        after = get_local_model_list(temp_dir)
        new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
    if not new_file:
        print(f"Download failed: {url}")
        return ""
    print(f"Download completed: {url}")
    return new_file


def escape_lora_basename(basename: str):
    return basename.replace(".", "_").replace(" ", "_").replace(",", "")


def to_lora_key(path: str):
    return escape_lora_basename(Path(path).stem)


def to_lora_path(key: str):
    if Path(key).is_file(): return key
    path = Path(f"{DIRECTORY_LORAS}/{escape_lora_basename(key)}.safetensors")
    return str(path)


def safe_float(input):
    output = 1.0
    try:
        output = float(input)
    except Exception:
        output = 1.0
    return output


def save_images(images: list[Image.Image], metadatas: list[str]):
    from PIL import PngImagePlugin
    import uuid
    try:
        output_images = []
        for image, metadata in zip(images, metadatas):
            info = PngImagePlugin.PngInfo()
            info.add_text("parameters", metadata)
            savefile = f"{str(uuid.uuid4())}.png"
            image.save(savefile, "PNG", pnginfo=info)
            output_images.append(str(Path(savefile).resolve()))
        return output_images
    except Exception as e:
        print(f"Failed to save image file: {e}")
        raise Exception(f"Failed to save image file:") from e


def save_gallery_images(images, model_name="", progress=gr.Progress(track_tqdm=True)):
    progress(0, desc="Updating gallery...")
    basename = f"{model_name.split('/')[-1]}_{datetime.now(FILENAME_TIMEZONE).strftime('%Y%m%d_%H%M%S')}_"
    if not images: return images, gr.update()
    output_images = []
    output_paths = []
    for i, image in enumerate(images):
        filename = f"{basename}{str(i + 1)}.png"
        oldpath = Path(image[0])
        newpath = oldpath
        try:
            if oldpath.exists():
                newpath = oldpath.resolve().rename(Path(filename).resolve())
        except Exception as e:
            print(e)
        finally: 
            output_paths.append(str(newpath))
            output_images.append((str(newpath), str(filename)))
    progress(1, desc="Gallery updated.")
    return gr.update(value=output_images), gr.update(value=output_paths, visible=True)


def save_gallery_history(images, files, history_gallery, history_files, progress=gr.Progress(track_tqdm=True)):
    if not images or not files: return gr.update(), gr.update()
    if not history_gallery: history_gallery = []
    if not history_files: history_files = []
    output_gallery = images + history_gallery
    output_files = files + history_files
    return gr.update(value=output_gallery), gr.update(value=output_files, visible=True)


def save_image_history(image, gallery, files, model_name: str, progress=gr.Progress(track_tqdm=True)):
    if not gallery: gallery = []
    if not files: files = []
    try:
        basename = f"{model_name.split('/')[-1]}_{datetime.now(FILENAME_TIMEZONE).strftime('%Y%m%d_%H%M%S')}"
        if image is None or not isinstance(image, (str, Image.Image, np.ndarray, tuple)): return gr.update(), gr.update()
        filename = f"{basename}.png"
        if isinstance(image, tuple): image = image[0]
        if isinstance(image, str): oldpath = image
        elif isinstance(image, Image.Image):
            oldpath = "temp.png"
            image.save(oldpath)
        elif isinstance(image, np.ndarray):
            oldpath = "temp.png"
            Image.fromarray(image).convert('RGBA').save(oldpath)
        oldpath = Path(oldpath)
        newpath = oldpath
        if oldpath.exists():
            shutil.copy(oldpath.resolve(), Path(filename).resolve())
            newpath = Path(filename).resolve()
        files.insert(0, str(newpath))
        gallery.insert(0, (str(newpath), str(filename)))
    except Exception as e:
        print(e)
    finally: 
        return gr.update(value=gallery), gr.update(value=files, visible=True)


def download_private_repo(repo_id, dir_path, is_replace):
    if not HF_READ_TOKEN: return
    try:
        snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], token=HF_READ_TOKEN)
    except Exception as e:
        print(f"Error: Failed to download {repo_id}.")
        print(e)
        return
    if is_replace:
        for file in Path(dir_path).glob("*"):
            if file.exists() and "." in file.stem or " " in file.stem and file.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']:
                newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}')
                file.resolve().rename(newpath.resolve())


private_model_path_repo_dict = {} # {"local filepath": "huggingface repo_id", ...}


def get_private_model_list(repo_id, dir_path):
    global private_model_path_repo_dict
    api = HfApi()
    if not HF_READ_TOKEN: return []
    try:
        files = api.list_repo_files(repo_id, token=HF_READ_TOKEN)
    except Exception as e:
        print(f"Error: Failed to list {repo_id}.")
        print(e)
        return []
    model_list = []
    for file in files:
        path = Path(f"{dir_path}/{file}")
        if path.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']:
            model_list.append(str(path))
    for model in model_list:
        private_model_path_repo_dict[model] = repo_id
    return model_list


def download_private_file(repo_id, path, is_replace):
    file = Path(path)
    newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file
    if not HF_READ_TOKEN or newpath.exists(): return
    filename = file.name
    dirname = file.parent.name
    try:
        hf_hub_download(repo_id=repo_id, filename=filename, local_dir=dirname, token=HF_READ_TOKEN)
    except Exception as e:
        print(f"Error: Failed to download {filename}.")
        print(e)
        return
    if is_replace:
        file.resolve().rename(newpath.resolve())


def download_private_file_from_somewhere(path, is_replace):
    if not path in private_model_path_repo_dict.keys(): return
    repo_id = private_model_path_repo_dict.get(path, None)
    download_private_file(repo_id, path, is_replace)


model_id_list = []
def get_model_id_list():
    global model_id_list
    if len(model_id_list) != 0: return model_id_list
    api = HfApi()
    model_ids = []
    try:
        models_likes = []
        for author in HF_MODEL_USER_LIKES:
            models_likes.extend(api.list_models(author=author, task="text-to-image", cardData=True, sort="likes"))
        models_ex = []
        for author in HF_MODEL_USER_EX:
            models_ex = api.list_models(author=author, task="text-to-image", cardData=True, sort="last_modified")
    except Exception as e:
        print(f"Error: Failed to list {author}'s models.")
        print(e)
        return model_ids
    for model in models_likes:
        model_ids.append(model.id) if not model.private else ""
    anime_models = []
    real_models = []
    anime_models_flux = []
    real_models_flux = []
    for model in models_ex:
        if not model.private and not model.gated:
            if "diffusers:FluxPipeline" in model.tags: anime_models_flux.append(model.id) if "anime" in model.tags else real_models_flux.append(model.id)
            else: anime_models.append(model.id) if "anime" in model.tags else real_models.append(model.id)
    model_ids.extend(anime_models)
    model_ids.extend(real_models)
    model_ids.extend(anime_models_flux)
    model_ids.extend(real_models_flux)
    model_id_list = model_ids.copy()
    return model_ids


model_id_list = get_model_id_list()


def get_t2i_model_info(repo_id: str):
    api = HfApi(token=HF_TOKEN)
    try:
        if not is_repo_name(repo_id): return ""
        model = api.model_info(repo_id=repo_id, timeout=5.0)
    except Exception as e:
        print(f"Error: Failed to get {repo_id}'s info.")
        print(e)
        return ""
    if model.private or model.gated: return ""
    tags = model.tags
    info = []
    url = f"https://huggingface.co/{repo_id}/"
    if not 'diffusers' in tags: return ""
    for k, v in MODEL_TYPE_DICT.items():
        if k in tags: info.append(v)
    if model.card_data and model.card_data.tags:
        info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
    info.append(f"DLs: {model.downloads}")
    info.append(f"likes: {model.likes}")
    info.append(model.last_modified.strftime("lastmod: %Y-%m-%d"))
    md = f"Model Info: {', '.join(info)}, [Model Repo]({url})"
    return gr.update(value=md)


def get_tupled_model_list(model_list):
    if not model_list: return []
    tupled_list = []
    for repo_id in model_list:
        api = HfApi()
        try:
            if not api.repo_exists(repo_id): continue
            model = api.model_info(repo_id=repo_id)
        except Exception as e:
            print(e)
            continue
        if model.private or model.gated: continue
        tags = model.tags
        info = []
        if not 'diffusers' in tags: continue
        for k, v in MODEL_TYPE_DICT.items():
            if k in tags: info.append(v)
        if model.card_data and model.card_data.tags:
            info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
        if "pony" in info:
            info.remove("pony")
            name = f"{repo_id} (Pony🐴, {', '.join(info)})"
        else:
            name = f"{repo_id} ({', '.join(info)})"
        tupled_list.append((name, repo_id))
    return tupled_list


private_lora_dict = {}
try:
    with open('lora_dict.json', encoding='utf-8') as f:
        d = json.load(f)
        for k, v in d.items():
            private_lora_dict[escape_lora_basename(k)] = v
except Exception as e:
    print(e)
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
civitai_not_exists_list = []
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
civitai_last_results = {}  # {"URL to download": {search results}, ...}
civitai_last_choices = [("", "")]
civitai_last_gallery = []
all_lora_list = []


private_lora_model_list = []
def get_private_lora_model_lists():
    global private_lora_model_list
    if len(private_lora_model_list) != 0: return private_lora_model_list
    models1 = []
    models2 = []
    for repo in HF_LORA_PRIVATE_REPOS1:
        models1.extend(get_private_model_list(repo, DIRECTORY_LORAS))
    for repo in HF_LORA_PRIVATE_REPOS2:
        models2.extend(get_private_model_list(repo, DIRECTORY_LORAS))
    models = list_uniq(models1 + sorted(models2))
    private_lora_model_list = models.copy()
    return models


private_lora_model_list = get_private_lora_model_lists()


def get_civitai_info(path):
    global civitai_not_exists_list
    if path in set(civitai_not_exists_list): return ["", "", "", "", ""]
    if not Path(path).exists(): return None
    user_agent = get_user_agent()
    headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
    base_url = 'https://civitai.com/api/v1/model-versions/by-hash/'
    params = {}
    session = requests.Session()
    retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
    session.mount("https://", HTTPAdapter(max_retries=retries))
    import hashlib
    with open(path, 'rb') as file:
        file_data = file.read()
    hash_sha256 = hashlib.sha256(file_data).hexdigest()
    url = base_url + hash_sha256
    try:
        r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
    except Exception as e:
        print(e)
        return ["", "", "", "", ""]
    if not r.ok: return None
    json = r.json()
    if not 'baseModel' in json:
        civitai_not_exists_list.append(path)
        return ["", "", "", "", ""]
    items = []
    items.append(" / ".join(json['trainedWords']))
    items.append(json['baseModel'])
    items.append(json['model']['name'])
    items.append(f"https://civitai.com/models/{json['modelId']}")
    items.append(json['images'][0]['url'])
    return items


def get_lora_model_list():
    loras = list_uniq(get_private_lora_model_lists() + DIFFUSERS_FORMAT_LORAS + get_local_model_list(DIRECTORY_LORAS))
    loras.insert(0, "None")
    loras.insert(0, "")
    return loras


def get_all_lora_list():
    global all_lora_list
    loras = get_lora_model_list()
    all_lora_list = loras.copy()
    return loras


def get_all_lora_tupled_list():
    global loras_dict
    models = get_all_lora_list()
    if not models: return []
    tupled_list = []
    for model in models:
        #if not model: continue # to avoid GUI-related bug
        basename = Path(model).stem
        key = to_lora_key(model)
        items = None
        if key in loras_dict.keys():
            items = loras_dict.get(key, None)
        else:
            items = get_civitai_info(model)
            if items != None:
                loras_dict[key] = items
        name = basename
        value = model
        if items and items[2] != "":
            if items[1] == "Pony":
                name = f"{basename} (for {items[1]}🐴, {items[2]})"
            else:
                name = f"{basename} (for {items[1]}, {items[2]})"
        tupled_list.append((name, value))
    return tupled_list


def update_lora_dict(path):
    global loras_dict
    key = escape_lora_basename(Path(path).stem)
    if key in loras_dict.keys(): return
    items = get_civitai_info(path)
    if items == None: return
    loras_dict[key] = items


def download_lora(dl_urls: str):
    global loras_url_to_path_dict
    dl_path = ""
    before = get_local_model_list(DIRECTORY_LORAS)
    urls = []
    for url in [url.strip() for url in dl_urls.split(',')]:
        local_path = f"{DIRECTORY_LORAS}/{url.split('/')[-1]}"
        if not Path(local_path).exists():
            download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY)
            urls.append(url)
    after = get_local_model_list(DIRECTORY_LORAS)
    new_files = list_sub(after, before)
    i = 0
    for file in new_files:
        path = Path(file)
        if path.exists():
            new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
            path.resolve().rename(new_path.resolve())
            loras_url_to_path_dict[urls[i]] = str(new_path)
            update_lora_dict(str(new_path))
            dl_path = str(new_path)
        i += 1
    return dl_path


def copy_lora(path: str, new_path: str):
    if path == new_path: return new_path
    cpath = Path(path)
    npath = Path(new_path)
    if cpath.exists():
        try:
            shutil.copy(str(cpath.resolve()), str(npath.resolve()))
        except Exception as e:
            print(e)
            return None
        update_lora_dict(str(npath))
        return new_path
    else:
        return None


def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str):
    path = download_lora(dl_urls)
    if path:
        if not lora1 or lora1 == "None":
            lora1 = path
        elif not lora2 or lora2 == "None":
            lora2 = path
        elif not lora3 or lora3 == "None":
            lora3 = path
        elif not lora4 or lora4 == "None":
            lora4 = path
        elif not lora5 or lora5 == "None":
            lora5 = path
    choices = get_all_lora_tupled_list()
    return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\
        gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices)


def get_valid_lora_name(query: str, model_name: str):
    path = "None"
    if not query or query == "None": return "None"
    if to_lora_key(query) in loras_dict.keys(): return query
    if query in loras_url_to_path_dict.keys():
        path = loras_url_to_path_dict[query]
    else:
        path = to_lora_path(query.strip().split('/')[-1])
    if Path(path).exists():
        return path
    elif "http" in query:
        dl_file = download_lora(query)
        if dl_file and Path(dl_file).exists(): return dl_file
    else:
        dl_file = find_similar_lora(query, model_name)
        if dl_file and Path(dl_file).exists(): return dl_file
    return "None"


def get_valid_lora_path(query: str):
    path = None
    if not query or query == "None": return None
    if to_lora_key(query) in loras_dict.keys(): return query
    if Path(path).exists():
        return path
    else:
        return None


def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
    wt = lora_wt
    result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt)
    if not result: return wt
    wt = safe_float(result[0][0])
    return wt


def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
    if not "Classic" in str(prompt_syntax):  return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
    lora1 = get_valid_lora_name(lora1, model_name)
    lora2 = get_valid_lora_name(lora2, model_name)
    lora3 = get_valid_lora_name(lora3, model_name)
    lora4 = get_valid_lora_name(lora4, model_name)
    lora5 = get_valid_lora_name(lora5, model_name)
    if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
    lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt)
    lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt)
    lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt)
    lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt)
    lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt)
    on1, label1, tag1, md1 = get_lora_info(lora1)
    on2, label2, tag2, md2 = get_lora_info(lora2)
    on3, label3, tag3, md3 = get_lora_info(lora3)
    on4, label4, tag4, md4 = get_lora_info(lora4)
    on5, label5, tag5, md5 = get_lora_info(lora5)
    lora_paths = [lora1, lora2, lora3, lora4, lora5]
    prompts = prompt.split(",") if prompt else []
    for p in prompts:
        p = str(p).strip()
        if "<lora" in p:
            result = re.findall(r'<lora:(.+?):(.+?)>', p)
            if not result: continue
            key = result[0][0]
            wt = result[0][1]
            path = to_lora_path(key)
            if not key in loras_dict.keys() or not Path(path).exists():
                path = get_valid_lora_name(path)
                if not path or path == "None": continue
            if path in lora_paths or key in lora_paths:
                continue
            elif not on1:
                lora1 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora1_wt = safe_float(wt)
                on1 = True
            elif not on2:
                lora2 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora2_wt = safe_float(wt)
                on2 = True
            elif not on3:
                lora3 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora3_wt = safe_float(wt)
                on3 = True
            elif not on4:
                lora4 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora4_wt = safe_float(wt)
                on4 = True
            elif not on5:
                lora5 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora5_wt = safe_float(wt)
                on5 = True
    return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt


def get_lora_info(lora_path: str):
    is_valid = False
    tag = ""
    label = ""
    md = "None"
    if not lora_path or lora_path == "None":
        print("LoRA file not found.")
        return is_valid, label, tag, md
    path = Path(lora_path)
    new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
    if not to_lora_key(str(new_path)) in loras_dict.keys() and str(path) not in set(get_all_lora_list()):
        print("LoRA file is not registered.")
        return tag, label, tag, md
    if not new_path.exists():
        download_private_file_from_somewhere(str(path), True)
    basename = new_path.stem
    label = f'Name: {basename}'
    items = loras_dict.get(basename, None)
    if items == None:
        items = get_civitai_info(str(new_path))
        if items != None:
            loras_dict[basename] = items
    if items and items[2] != "":
        tag = items[0]
        label = f'Name: {basename}'
        if items[1] == "Pony":
            label = f'Name: {basename} (for Pony🐴)'
        if items[4]:
            md = f'<img src="{items[4]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL]({items[3]})'
        elif items[3]:
            md = f'[LoRA Model URL]({items[3]})'
    is_valid = True
    return is_valid, label, tag, md


def normalize_prompt_list(tags: list[str]):
    prompts = []
    for tag in tags:
        tag = str(tag).strip()
        if tag:
            prompts.append(tag)
    return prompts


def apply_lora_prompt(prompt: str = "", lora_info: str = ""):
    if lora_info == "None": return gr.update(value=prompt)
    tags = prompt.split(",") if prompt else []
    prompts = normalize_prompt_list(tags)

    lora_tag = lora_info.replace("/",",")
    lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
    lora_prompts = normalize_prompt_list(lora_tags)
 
    empty = [""]
    prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty)
    return gr.update(value=prompt)


def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
    on1, label1, tag1, md1 = get_lora_info(lora1)
    on2, label2, tag2, md2 = get_lora_info(lora2)
    on3, label3, tag3, md3 = get_lora_info(lora3)
    on4, label4, tag4, md4 = get_lora_info(lora4)
    on5, label5, tag5, md5 = get_lora_info(lora5)
    lora_paths = [lora1, lora2, lora3, lora4, lora5]

    output_prompt = prompt
    if "Classic" in str(prompt_syntax):
        prompts = prompt.split(",") if prompt else []
        output_prompts = []
        for p in prompts:
            p = str(p).strip()
            if "<lora" in p:
                result = re.findall(r'<lora:(.+?):(.+?)>', p)
                if not result: continue
                key = result[0][0]
                wt = result[0][1]
                path = to_lora_path(key)
                if not key in loras_dict.keys() or not path: continue
                if path in lora_paths:
                    output_prompts.append(f"<lora:{to_lora_key(path)}:{safe_float(wt):.2f}>")
            elif p:
                output_prompts.append(p)
        lora_prompts = []
        if on1: lora_prompts.append(f"<lora:{to_lora_key(lora1)}:{lora1_wt:.2f}>")
        if on2: lora_prompts.append(f"<lora:{to_lora_key(lora2)}:{lora2_wt:.2f}>")
        if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>")
        if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>")
        if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>")
        output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""]))
    choices = get_all_lora_tupled_list()

    return gr.update(value=output_prompt), gr.update(value=lora1, choices=choices), gr.update(value=lora1_wt),\
     gr.update(value=tag1, label=label1, visible=on1), gr.update(visible=on1), gr.update(value=md1, visible=on1),\
     gr.update(value=lora2, choices=choices), gr.update(value=lora2_wt),\
     gr.update(value=tag2, label=label2, visible=on2), gr.update(visible=on2), gr.update(value=md2, visible=on2),\
     gr.update(value=lora3, choices=choices), gr.update(value=lora3_wt),\
     gr.update(value=tag3, label=label3, visible=on3), gr.update(visible=on3), gr.update(value=md3, visible=on3),\
     gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\
     gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\
     gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\
     gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5)


def get_my_lora(link_url, romanize):
    l_name = ""
    l_path = ""
    before = get_local_model_list(DIRECTORY_LORAS)
    for url in [url.strip() for url in link_url.split(',')]:
        if not Path(f"{DIRECTORY_LORAS}/{url.split('/')[-1]}").exists():
            l_name = download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY, romanize)
    after = get_local_model_list(DIRECTORY_LORAS)
    new_files = list_sub(after, before)
    for file in new_files:
        path = Path(file)
        if path.exists():
            new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
            path.resolve().rename(new_path.resolve())
            update_lora_dict(str(new_path))
            l_path = str(new_path)
    new_lora_model_list = get_lora_model_list()
    new_lora_tupled_list = get_all_lora_tupled_list()
    msg_lora = "Downloaded"
    if l_name:
        msg_lora += f": <b>{l_name}</b>"
        print(msg_lora)

    return gr.update(
        choices=new_lora_tupled_list, value=l_path
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        value=msg_lora
    )


def upload_file_lora(files, progress=gr.Progress(track_tqdm=True)):
    progress(0, desc="Uploading...")
    file_paths = [file.name for file in files]
    progress(1, desc="Uploaded.")
    return gr.update(value=file_paths, visible=True), gr.update()


def move_file_lora(filepaths):
    for file in filepaths:
        path = Path(shutil.move(Path(file).resolve(), Path(f"./{DIRECTORY_LORAS}").resolve()))
        newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
        path.resolve().rename(newpath.resolve())
        update_lora_dict(str(newpath))

    new_lora_model_list = get_lora_model_list()
    new_lora_tupled_list = get_all_lora_tupled_list()
    
    return gr.update(
        choices=new_lora_tupled_list, value=new_lora_model_list[-1]
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        choices=new_lora_tupled_list
    )


CIVITAI_SORT = ["Highest Rated", "Most Downloaded", "Newest"]
CIVITAI_PERIOD = ["AllTime", "Year", "Month", "Week", "Day"]
CIVITAI_BASEMODEL = ["Pony", "Illustrious", "SDXL 1.0", "SD 1.5", "Flux.1 D", "Flux.1 S"]


def get_civitai_info(path):
    global civitai_not_exists_list, loras_url_to_path_dict
    default = ["", "", "", "", ""]
    if path in set(civitai_not_exists_list): return default
    if not Path(path).exists(): return None
    user_agent = get_user_agent()
    headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
    base_url = 'https://civitai.com/api/v1/model-versions/by-hash/'
    params = {}
    session = requests.Session()
    retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
    session.mount("https://", HTTPAdapter(max_retries=retries))
    import hashlib
    with open(path, 'rb') as file:
        file_data = file.read()
    hash_sha256 = hashlib.sha256(file_data).hexdigest()
    url = base_url + hash_sha256
    try:
        r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
    except Exception as e:
        print(e)
        return default
    else:
        if not r.ok: return None
        json = r.json()
        if 'baseModel' not in json:
            civitai_not_exists_list.append(path)
            return default
        items = []
        items.append(" / ".join(json['trainedWords']))                  # The words (prompts) used to trigger the model
        items.append(json['baseModel'])                                 # Base model (SDXL1.0, Pony, ...)
        items.append(json['model']['name'])                             # The name of the model version
        items.append(f"https://civitai.com/models/{json['modelId']}")   # The repo url for the model
        items.append(json['images'][0]['url'])                          # The url for a sample image
        loras_url_to_path_dict[path] = json['downloadUrl']              # The download url to get the model file for this specific version
        return items


def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100,
                           sort: str = "Highest Rated", period: str = "AllTime", tag: str = "", user: str = "", page: int = 1):
    user_agent = get_user_agent()
    headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
    base_url = 'https://civitai.com/api/v1/models'
    params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'page': int(page), 'nsfw': 'true'}
    if query: params["query"] = query
    if tag: params["tag"] = tag
    if user: params["username"] = user
    session = requests.Session()
    retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
    session.mount("https://", HTTPAdapter(max_retries=retries))
    try:
        r = session.get(base_url, params=params, headers=headers, stream=True, timeout=(3.0, 30))
    except Exception as e:
        print(e)
        return None
    else:
        if not r.ok: return None
        json = r.json()
        if 'items' not in json: return None
        items = []
        for j in json['items']:
            for model in j['modelVersions']:
                item = {}
                if len(allow_model) != 0 and model['baseModel'] not in set(allow_model): continue
                item['name'] = j['name']
                item['creator'] = j['creator']['username'] if 'creator' in j.keys() and 'username' in j['creator'].keys() else ""
                item['tags'] = j['tags'] if 'tags' in j.keys() else []
                item['model_name'] = model['name'] if 'name' in model.keys() else ""
                item['base_model'] = model['baseModel'] if 'baseModel' in model.keys() else ""
                item['description'] = model['description'] if 'description' in model.keys() else ""
                item['dl_url'] = model['downloadUrl']
                item['md'] = ""
                if 'images' in model.keys() and len(model["images"]) != 0:
                    item['img_url'] = model["images"][0]["url"]
                    item['md'] += f'<img src="{model["images"][0]["url"]}#float" alt="thumbnail" width="150" height="240"><br>'
                else: item['img_url'] = "/home/user/app/null.png"
                item['md'] += f'''Model URL: [https://civitai.com/models/{j["id"]}](https://civitai.com/models/{j["id"]})<br>Model Name: {item["name"]}<br>
                    Creator: {item["creator"]}<br>Tags: {", ".join(item["tags"])}<br>Base Model: {item["base_model"]}<br>Description: {item["description"]}'''
                items.append(item)
        return items


def search_civitai_lora(query, base_model=[], sort=CIVITAI_SORT[0], period=CIVITAI_PERIOD[0], tag="", user="", gallery=[]):
    global civitai_last_results, civitai_last_choices, civitai_last_gallery
    civitai_last_choices = [("", "")]
    civitai_last_gallery = []
    civitai_last_results = {}
    items = search_lora_on_civitai(query, base_model, 100, sort, period, tag, user)
    if not items: return gr.update(choices=[("", "")], value="", visible=False),\
          gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
    civitai_last_results = {}
    choices = []
    gallery = []
    for item in items:
        base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
        name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
        value = item['dl_url']
        choices.append((name, value))
        gallery.append((item['img_url'], name))
        civitai_last_results[value] = item
    if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
          gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
    civitai_last_choices = choices
    civitai_last_gallery = gallery
    result = civitai_last_results.get(choices[0][1], "None")
    md = result['md'] if result else ""
    return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
          gr.update(visible=True), gr.update(visible=True), gr.update(value=gallery)


def update_civitai_selection(evt: gr.SelectData):
    try:
        selected_index = evt.index
        selected = civitai_last_choices[selected_index][1]
        return gr.update(value=selected)
    except Exception:
        return gr.update()


def select_civitai_lora(search_result):
    if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
    result = civitai_last_results.get(search_result, "None")
    md = result['md'] if result else ""
    return gr.update(value=search_result), gr.update(value=md, visible=True)


def download_my_lora_flux(dl_urls: str, lora):
    path = download_lora(dl_urls)
    if path: lora = path
    choices = get_all_lora_tupled_list()
    return gr.update(value=lora, choices=choices)


def apply_lora_prompt_flux(lora_info: str):
    if lora_info == "None": return ""
    lora_tag = lora_info.replace("/",",")
    lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
    lora_prompts = normalize_prompt_list(lora_tags)
    prompt = ", ".join(list_uniq(lora_prompts))
    return prompt


def update_loras_flux(prompt, lora, lora_wt):
    on, label, tag, md = get_lora_info(lora)
    choices = get_all_lora_tupled_list()
    return gr.update(value=prompt), gr.update(value=lora, choices=choices), gr.update(value=lora_wt),\
     gr.update(value=tag, label=label, visible=on), gr.update(value=md, visible=on)


def search_civitai_lora_json(query, base_model):
    results = {}
    items = search_lora_on_civitai(query, base_model)
    if not items: return gr.update(value=results)
    for item in items:
        results[item['dl_url']] = item
    return gr.update(value=results)


def get_civitai_tag():
    default = [""]
    user_agent = get_user_agent()
    headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
    base_url = 'https://civitai.com/api/v1/tags'
    params = {'limit': 200}
    session = requests.Session()
    retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
    session.mount("https://", HTTPAdapter(max_retries=retries))
    url = base_url
    try:
        r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
        if not r.ok: return default
        j = dict(r.json()).copy()
        if "items" not in j.keys(): return default
        items = []
        for item in j["items"]:
            items.append([str(item.get("name", "")), int(item.get("modelCount", 0))])
        df = pd.DataFrame(items)
        df.sort_values(1, ascending=False)
        tags = df.values.tolist()
        tags = [""] + [l[0] for l in tags]
        return tags
    except Exception as e:
        print(e)
        return default


LORA_BASE_MODEL_DICT = {
    "diffusers:StableDiffusionPipeline": ["SD 1.5"],
    "diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"],
    "diffusers:FluxPipeline": ["Flux.1 D", "Flux.1 S"],
}


def get_lora_base_model(model_name: str):
    api = HfApi(token=HF_TOKEN)
    default = ["Pony", "SDXL 1.0"]
    try:
        model = api.model_info(repo_id=model_name, timeout=5.0)
        tags = model.tags
        for tag in tags:
            if tag in LORA_BASE_MODEL_DICT.keys(): return LORA_BASE_MODEL_DICT.get(tag, default)
    except Exception:
        return default
    return default


def find_similar_lora(q: str, model_name: str):
    from rapidfuzz.process import extractOne
    from rapidfuzz.utils import default_process
    query = to_lora_key(q)
    print(f"Finding <lora:{query}:...>...")
    keys = list(private_lora_dict.keys())
    values = [x[2] for x in list(private_lora_dict.values())]
    s = default_process(query)
    e1 = extractOne(s, keys + values, processor=default_process, score_cutoff=80.0)
    key = ""
    if e1:
        e = e1[0]
        if e in set(keys): key = e
        elif e in set(values): key = keys[values.index(e)]
    if key:
        path = to_lora_path(key)
        new_path = to_lora_path(query)
        if not Path(path).exists():
            if not Path(new_path).exists(): download_private_file_from_somewhere(path, True)
            if Path(path).exists() and copy_lora(path, new_path): return new_path
    print(f"Finding <lora:{query}:...> on Civitai...")
    civitai_query = Path(query).stem if Path(query).is_file() else query
    civitai_query = civitai_query.replace("_", " ").replace("-", " ")
    base_model = get_lora_base_model(model_name)
    items = search_lora_on_civitai(civitai_query, base_model, 1)
    if items:
        item = items[0]
        path = download_lora(item['dl_url'])
        new_path = query if Path(query).is_file() else to_lora_path(query)
        if path and copy_lora(path, new_path): return new_path
    return None


def change_interface_mode(mode: str):
    if mode == "Fast":
        return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
        gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\
        gr.update(visible=True), gr.update(value="Fast")
    elif mode == "Simple": # t2i mode
        return gr.update(open=True), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
        gr.update(visible=True), gr.update(open=False), gr.update(visible=False), gr.update(open=True),\
        gr.update(visible=False), gr.update(value="Standard")
    elif mode == "LoRA": # t2i LoRA  mode
        return gr.update(open=True), gr.update(visible=True), gr.update(open=True), gr.update(open=False),\
        gr.update(visible=True), gr.update(open=True), gr.update(visible=True), gr.update(open=False),\
        gr.update(visible=False), gr.update(value="Standard")
    else: # Standard
        return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
        gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\
        gr.update(visible=True), gr.update(value="Standard")


quality_prompt_list = [
    {
        "name": "None",
        "prompt": "",
        "negative_prompt": "lowres",
    },
    {
        "name": "Animagine Common",
        "prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
        "negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
    },
    {
        "name": "Pony Anime Common",
        "prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres",
        "negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
    },
    {
        "name": "Pony Common",
        "prompt": "source_anime, score_9, score_8_up, score_7_up",
        "negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
    },
    {
        "name": "Animagine Standard v3.0",
        "prompt": "masterpiece, best quality",
        "negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name",
    },
    {
        "name": "Animagine Standard v3.1",
        "prompt": "masterpiece, best quality, very aesthetic, absurdres",
        "negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
    },
    {
        "name": "Animagine Light v3.1",
        "prompt": "(masterpiece), best quality, very aesthetic, perfect face",
        "negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn",
    },
    {
        "name": "Animagine Heavy v3.1",
        "prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details",
        "negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing",
    },
]


style_list = [
    {
        "name": "None",
        "prompt": "",
        "negative_prompt": "",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Manga",
        "prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
        "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]


optimization_list = {
    "None": [28, 7., 'Euler', False, 'None', 1.],
    "Default": [28, 7., 'Euler', False, 'None', 1.],
    "SPO": [28, 7., 'Euler', True, 'loras/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors', 1.],
    "DPO": [28, 7., 'Euler', True, 'loras/sdxl-DPO-LoRA.safetensors', 1.],
    "DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.],
    "SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.],
    "Hyper-SDXL 12step": [12, 5., 'TCD', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 1.],
    "Hyper-SDXL 8step": [8, 5., 'TCD', True, 'loras/Hyper-SDXL-8steps-CFG-lora.safetensors', 1.],
    "Hyper-SDXL 4step": [4, 0, 'TCD', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 1.],
    "Hyper-SDXL 2step": [2, 0, 'TCD', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 1.],
    "Hyper-SDXL 1step": [1, 0, 'TCD', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 1.],
    "PCM 16step": [16, 4., 'Euler trailing', True, 'loras/pcm_sdxl_normalcfg_16step_converted.safetensors', 1.],
    "PCM 8step": [8, 4., 'Euler trailing', True, 'loras/pcm_sdxl_normalcfg_8step_converted.safetensors', 1.],
    "PCM 4step": [4, 2., 'Euler trailing', True, 'loras/pcm_sdxl_smallcfg_4step_converted.safetensors', 1.],
    "PCM 2step": [2, 1., 'Euler trailing', True, 'loras/pcm_sdxl_smallcfg_2step_converted.safetensors', 1.],
}


def set_optimization(opt, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora_gui, lora_scale_gui):
    if not opt in list(optimization_list.keys()): opt = "None"
    def_steps_gui = 28
    def_cfg_gui = 7.
    steps = optimization_list.get(opt, "None")[0]
    cfg = optimization_list.get(opt, "None")[1]
    sampler = optimization_list.get(opt, "None")[2]
    clip_skip = optimization_list.get(opt, "None")[3]
    lora = optimization_list.get(opt, "None")[4]
    lora_scale = optimization_list.get(opt, "None")[5]
    if opt == "None":
        steps = max(steps_gui, def_steps_gui)
        cfg = max(cfg_gui, def_cfg_gui)
        clip_skip = clip_skip_gui
    elif opt == "SPO" or opt == "DPO":
        steps = max(steps_gui, def_steps_gui)
        cfg = max(cfg_gui, def_cfg_gui)

    return gr.update(value=steps), gr.update(value=cfg), gr.update(value=sampler),\
          gr.update(value=clip_skip), gr.update(value=lora), gr.update(value=lora_scale),


# [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui]
preset_sampler_setting = {
    "None": ["Euler", 28, 7., True, 1024, 1024, "None"],
    "Anime 3:4 Fast": ["LCM", 8, 2.5, True, 896, 1152, "DPO Turbo"],
    "Anime 3:4 Standard": ["Euler", 28, 7., True, 896, 1152, "None"],
    "Anime 3:4 Heavy": ["Euler", 40, 7., True, 896, 1152, "None"],
    "Anime 1:1 Fast": ["LCM", 8, 2.5, True, 1024, 1024, "DPO Turbo"],
    "Anime 1:1 Standard": ["Euler", 28, 7., True, 1024, 1024, "None"],
    "Anime 1:1 Heavy": ["Euler", 40, 7., True, 1024, 1024, "None"],
    "Photo 3:4 Fast": ["LCM", 8, 2.5, False, 896, 1152, "DPO Turbo"],
    "Photo 3:4 Standard": ["DPM++ 2M Karras", 28, 7., False, 896, 1152, "None"],
    "Photo 3:4 Heavy": ["DPM++ 2M Karras", 40, 7., False, 896, 1152, "None"],
    "Photo 1:1 Fast": ["LCM", 8, 2.5, False, 1024, 1024, "DPO Turbo"],
    "Photo 1:1 Standard": ["DPM++ 2M Karras", 28, 7., False, 1024, 1024, "None"],
    "Photo 1:1 Heavy": ["DPM++ 2M Karras", 40, 7., False, 1024, 1024, "None"],
}


def set_sampler_settings(sampler_setting):
    if not sampler_setting in list(preset_sampler_setting.keys()) or sampler_setting == "None":
        return gr.update(value="Euler"), gr.update(value=28), gr.update(value=7.), gr.update(value=True),\
              gr.update(value=1024), gr.update(value=1024), gr.update(value="None")
    v = preset_sampler_setting.get(sampler_setting, ["Euler", 28, 7., True, 1024, 1024])
    # sampler, steps, cfg, clip_skip, width, height, optimization
    return gr.update(value=v[0]), gr.update(value=v[1]), gr.update(value=v[2]), gr.update(value=v[3]),\
          gr.update(value=v[4]), gr.update(value=v[5]), gr.update(value=v[6])


preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list}


def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"):
    animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
    animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
    pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
    pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
    prompts = to_list(prompt)
    neg_prompts = to_list(neg_prompt)

    all_styles_ps = []
    all_styles_nps = []
    for d in style_list:
        all_styles_ps.extend(to_list(str(d.get("prompt", ""))))
        all_styles_nps.extend(to_list(str(d.get("negative_prompt", ""))))

    all_quality_ps = []
    all_quality_nps = []
    for d in quality_prompt_list:
        all_quality_ps.extend(to_list(str(d.get("prompt", ""))))
        all_quality_nps.extend(to_list(str(d.get("negative_prompt", ""))))

    quality_ps = to_list(preset_quality[quality_key][0])
    quality_nps = to_list(preset_quality[quality_key][1])
    styles_ps = to_list(preset_styles[styles_key][0])
    styles_nps = to_list(preset_styles[styles_key][1])

    prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps)
    neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps)

    last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []
    last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []

    if type == "Animagine":
        prompts = prompts + animagine_ps
        neg_prompts = neg_prompts + animagine_nps
    elif type == "Pony":
        prompts = prompts + pony_ps
        neg_prompts = neg_prompts + pony_nps

    prompts = prompts + styles_ps + quality_ps
    neg_prompts = neg_prompts + styles_nps + quality_nps

    prompt = ", ".join(list_uniq(prompts) + last_empty_p)
    neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)

    return gr.update(value=prompt), gr.update(value=neg_prompt), gr.update(value=type) 


def set_quick_presets(genre:str = "None", type:str = "Auto", speed:str = "None", aspect:str = "None"):
    quality = "None"
    style = "None"
    sampler = "None"
    opt = "None"

    if genre == "Anime":
        if type != "None" and type != "Auto": style = "Anime"
        if aspect == "1:1":
            if speed == "Heavy":
                sampler = "Anime 1:1 Heavy"
            elif speed == "Fast":
                sampler = "Anime 1:1 Fast"
            else:
                sampler = "Anime 1:1 Standard"
        elif aspect == "3:4":
            if speed == "Heavy":
                sampler = "Anime 3:4 Heavy"
            elif speed == "Fast":
                sampler = "Anime 3:4 Fast"
            else:
                sampler = "Anime 3:4 Standard"
        if type == "Pony":
            quality = "Pony Anime Common"
        elif type == "Animagine":
            quality = "Animagine Common"
        else:
            quality = "None"
    elif genre == "Photo":
        if type != "None" and type != "Auto": style = "Photographic"
        if aspect == "1:1":
            if speed == "Heavy":
                sampler = "Photo 1:1 Heavy"
            elif speed == "Fast":
                sampler = "Photo 1:1 Fast"
            else:
                sampler = "Photo 1:1 Standard"
        elif aspect == "3:4":
            if speed == "Heavy":
                sampler = "Photo 3:4 Heavy"
            elif speed == "Fast":
                sampler = "Photo 3:4 Fast"
            else:
                sampler = "Photo 3:4 Standard"
        if type == "Pony":
            quality = "Pony Common"
        else:
            quality = "None"

    if speed == "Fast":
        opt = "DPO Turbo"
        if genre == "Anime" and type != "Pony" and type != "Auto": quality = "Animagine Light v3.1"

    return gr.update(value=quality), gr.update(value=style), gr.update(value=sampler), gr.update(value=opt), gr.update(value=type)


textual_inversion_dict = {}
try:
    with open('textual_inversion_dict.json', encoding='utf-8') as f:
        textual_inversion_dict = json.load(f)
except Exception:
    pass
textual_inversion_file_token_list = []


def get_tupled_embed_list(embed_list):
    global textual_inversion_file_list
    tupled_list = []
    for file in embed_list:
        token = textual_inversion_dict.get(Path(file).name, [Path(file).stem.replace(",",""), False])[0]
        tupled_list.append((token, file))
        textual_inversion_file_token_list.append(token)
    return tupled_list


def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui):
    ti_tags = list(textual_inversion_dict.values()) + textual_inversion_file_token_list
    tags = prompt_gui.split(",") if prompt_gui else []
    prompts = []
    for tag in tags:
        tag = str(tag).strip()
        if tag and not tag in ti_tags:
            prompts.append(tag)
    ntags = neg_prompt_gui.split(",") if neg_prompt_gui else []
    neg_prompts = []
    for tag in ntags:
        tag = str(tag).strip()
        if tag and not tag in ti_tags:
            neg_prompts.append(tag)
    ti_prompts = []
    ti_neg_prompts = []
    for ti in textual_inversion_gui:
        tokens = textual_inversion_dict.get(Path(ti).name, [Path(ti).stem.replace(",",""), False])
        is_positive = tokens[1] == True or "positive" in Path(ti).parent.name
        if is_positive: # positive prompt
            ti_prompts.append(tokens[0])
        else: # negative prompt (default)
            ti_neg_prompts.append(tokens[0])
    empty = [""]
    prompt = ", ".join(prompts + ti_prompts + empty)
    neg_prompt = ", ".join(neg_prompts + ti_neg_prompts + empty)
    return gr.update(value=prompt), gr.update(value=neg_prompt),


def get_model_pipeline(repo_id: str):
    api = HfApi(token=HF_TOKEN)
    default = "StableDiffusionPipeline"
    try:
        if not is_repo_name(repo_id): return default
        model = api.model_info(repo_id=repo_id, timeout=5.0)
    except Exception:
        return default
    if model.private or model.gated: return default
    tags = model.tags
    if not 'diffusers' in tags: return default
    if 'diffusers:FluxPipeline' in tags:
        return "FluxPipeline"
    if 'diffusers:StableDiffusionXLPipeline' in tags:
        return "StableDiffusionXLPipeline"
    elif 'diffusers:StableDiffusionPipeline' in tags:
        return "StableDiffusionPipeline"
    else:
        return default


EXAMPLES_GUI = [
    [
        "1girl, souryuu asuka langley, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors, masterpiece, best quality, very aesthetic, absurdres",
        "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
        1,
        30,
        7.5,
        True,
        -1,
        "Euler",
        1152,
        896,
        "votepurchase/animagine-xl-3.1",
    ],
    [
        "solo, princess Zelda OOT, score_9, score_8_up, score_8, medium breasts, cute, eyelashes, cute small face, long hair, crown braid, hairclip, pointy ears, soft curvy body, looking at viewer, smile, blush, white dress, medium body, (((holding the Master Sword))), standing, deep forest in the background",
        "score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white,",
        1,
        30,
        5.,
        True,
        -1,
        "Euler",
        1024,
        1024,
        "votepurchase/ponyDiffusionV6XL",
    ],
    [
        "1girl, oomuro sakurako, yuru yuri, official art, school uniform, anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
        "photo, deformed, black and white, realism, disfigured, low contrast, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
        1,
        40,
        7.0,
        True,
        -1,
        "Euler",
        1024,
        1024,
        "Raelina/Rae-Diffusion-XL-V2",
    ],
    [
        "1girl, akaza akari, yuru yuri, official art, anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
        "photo, deformed, black and white, realism, disfigured, low contrast, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
        1,
        35,
        7.0,
        True,
        -1,
        "Euler",
        1024,
        1024,
        "Raelina/Raemu-XL-V4",
    ],
    [
        "yoshida yuuko, machikado mazoku, 1girl, solo, demon horns,horns, school uniform, long hair, open mouth, skirt, demon girl, ahoge, shiny, shiny hair, anime artwork",
        "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
        1,
        50,
        7.,
        True,
        -1,
        "Euler",
        1024,
        1024,
        "cagliostrolab/animagine-xl-3.1",
    ],
]


RESOURCES = (
    """### Resources
    - You can also try the image generator in Colab’s free tier, which provides free GPU [link](https://github.com/R3gm/SD_diffusers_interactive).
    """
)