File size: 6,485 Bytes
545659d
 
 
123829d
545659d
 
 
 
 
936d537
545659d
 
 
 
10b0245
 
123829d
10b0245
123829d
746db95
3f4959e
3bf2d11
5e79f53
 
545659d
 
 
 
 
 
ee7a6d5
123829d
 
545659d
cbdb616
 
545659d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7962bc6
545659d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e79f53
545659d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e79f53
 
 
545659d
 
 
 
 
 
 
 
3f4959e
545659d
 
 
cb5ba84
545659d
 
cb5ba84
545659d
 
 
cb5ba84
545659d
 
 
 
42313b5
545659d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import cv2
import numpy as np
from transformers import pipeline
import os
import torch
import torch.nn.functional as F
from torchvision.transforms import Compose
import tempfile
import spaces 

from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet

@torch.no_grad()
def predict_depth(model, image):
    return model(image)["depth"]

@spaces.GPU
def make_video(video_path, outdir='./vis_video_depth',encoder='vitl'):
    if encoder not in ["vitl","vitb","vits"]:
        encoder = "vits"
    # DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
    # model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
    # Define path for temporary processed frames
    temp_frame_dir = tempfile.mkdtemp()
    
    margin_width = 50

    DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
    DEVICE = "cuda"
    # depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
    depth_anything = pipeline(task = "depth-estimation", model="nielsr/depth-anything-small", device=0)
    
    # total_params = sum(param.numel() for param in depth_anything.parameters())
    # print('Total parameters: {:.2f}M'.format(total_params / 1e6))
    
    transform = Compose([
        Resize(
            width=518,
            height=518,
            resize_target=False,
            keep_aspect_ratio=True,
            ensure_multiple_of=14,
            resize_method='lower_bound',
            image_interpolation_method=cv2.INTER_CUBIC,
        ),
        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        PrepareForNet(),
    ])

    if os.path.isfile(video_path):
        if video_path.endswith('txt'):
            with open(video_path, 'r') as f:
                lines = f.read().splitlines()
        else:
            filenames = [video_path]
    else:
        filenames = os.listdir(video_path)
        filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
        filenames.sort()
    
    # os.makedirs(outdir, exist_ok=True)
    
    for k, filename in enumerate(filenames):
        print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
        
        raw_video = cv2.VideoCapture(filename)
        frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
        output_width = frame_width * 2 + margin_width
        
        filename = os.path.basename(filename)
        # output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
        with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
            output_path = tmpfile.name
        #out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
        # count=0
        while raw_video.isOpened():
            ret, raw_frame = raw_video.read()
            if not ret:
                break
            
            frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
            
            frame = transform({'image': frame})['image']
            frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
            
            depth = predict_depth(depth_anything, frame)

            depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
            depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
            
            depth = depth.cpu().numpy().astype(np.uint8)
            depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)
            
            split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
            combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
            
            # out.write(combined_frame)
            # frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
            # cv2.imwrite(frame_path, combined_frame)
            out.write(combined_frame)
            # count += 1
        
        raw_video.release()
        out.release()
        return output_path

css = """
#img-display-container {
    max-height: 100vh;
    }
#img-display-input {
    max-height: 80vh;
    }
#img-display-output {
    max-height: 80vh;
    }
"""


title = "# Depth Anything Video Demo"
description = """Depth Anything on full video files.

Please refer to our [paper](https://arxiv.org/abs/2401.10891), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details."""

transform = Compose([
        Resize(
            width=518,
            height=518,
            resize_target=False,
            keep_aspect_ratio=True,
            ensure_multiple_of=14,
            resize_method='lower_bound',
            image_interpolation_method=cv2.INTER_CUBIC,
        ),
        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        PrepareForNet(),
])

# @torch.no_grad()
# def predict_depth(model, image):
#     return model(image)

with gr.Blocks(css=css) as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown("### Video Depth Prediction demo")

    with gr.Row():
        input_video = gr.Video(label="Input Video")
        model_type = gr.Dropdown(["vits", "vitb", "vitl"], type="value", label='Model Type')
    submit = gr.Button("Submit")
    processed_video = gr.Video(label="Processed Video")

    def on_submit(uploaded_video,model_type):
                
        # Process the video and get the path of the output video
        output_video_path = make_video(uploaded_video,encoder=model_type)

        return output_video_path

    submit.click(on_submit, inputs=[input_video, model_type], outputs=processed_video)

    example_files = os.listdir('assets/examples_video')
    example_files.sort()
    example_files = [os.path.join('assets/examples_video', filename) for filename in example_files]
    examples = gr.Examples(examples=example_files, inputs=[input_video], outputs=processed_video, fn=on_submit, cache_examples=True)
    

if __name__ == '__main__':
    demo.queue().launch()