Spaces:
Sleeping
Sleeping
File size: 13,371 Bytes
5347681 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import streamlit as st
import random
import time
from typing import List, Dict
from langchain_community.chat_models import ChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from langchain_community.document_loaders import PyPDFLoader, TextLoader, UnstructuredWordDocumentLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain_community.graphs import NetworkxEntityGraph
from googleapiclient.discovery import build
from googleapiclient.errors import HttpError
import os
from dotenv import load_dotenv
import requests
from bs4 import BeautifulSoup
# Load environment variables
load_dotenv()
AI71_BASE_URL = "https://api.ai71.ai/v1/"
AI71_API_KEY = os.getenv('AI71_API_KEY')
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
GOOGLE_CSE_ID = os.getenv('GOOGLE_CSE_ID')
YOUTUBE_API_KEY = os.getenv('YOUTUBE_API_KEY')
# Initialize the Falcon model
chat = ChatOpenAI(
model="tiiuae/falcon-180B-chat",
api_key=AI71_API_KEY,
base_url=AI71_BASE_URL,
streaming=True,
)
# Initialize embeddings
embeddings = HuggingFaceEmbeddings()
FIELDS = [
"Mathematics", "Physics", "Chemistry", "Biology", "Computer Science",
"History", "Geography", "Literature", "Philosophy", "Psychology",
"Sociology", "Economics", "Business", "Finance", "Accounting",
"Law", "Political Science", "Environmental Science", "Astronomy", "Geology",
"Linguistics", "Anthropology", "Art History", "Music Theory", "Film Studies",
"Medical Science", "Nursing", "Public Health", "Nutrition", "Physical Education",
"Engineering", "Architecture", "Urban Planning", "Agriculture", "Veterinary Science",
"Oceanography", "Meteorology", "Statistics", "Data Science", "Artificial Intelligence",
"Cybersecurity", "Renewable Energy", "Quantum Physics", "Neuroscience", "Genetics",
"Biotechnology", "Nanotechnology", "Robotics", "Space Exploration", "Cryptography"
]
# List of educational resources
EDUCATIONAL_RESOURCES = [
"https://www.coursera.org",
"https://www.khanacademy.org",
"https://scholar.google.com",
"https://www.edx.org",
"https://www.udacity.com",
"https://www.udemy.com",
"https://www.futurelearn.com",
"https://www.lynda.com",
"https://www.skillshare.com",
"https://www.codecademy.com",
"https://www.brilliant.org",
"https://www.duolingo.com",
"https://www.ted.com/talks",
"https://ocw.mit.edu",
"https://www.open.edu/openlearn",
"https://www.coursebuffet.com",
"https://www.academicearth.org",
"https://www.edutopia.org",
"https://www.saylor.org",
"https://www.openculture.com",
"https://www.gutenberg.org",
"https://www.archive.org",
"https://www.wolframalpha.com",
"https://www.quizlet.com",
"https://www.mathway.com",
"https://www.symbolab.com",
"https://www.lessonplanet.com",
"https://www.teacherspayteachers.com",
"https://www.brainpop.com",
"https://www.ck12.org"
]
def search_web(query: str, num_results: int = 30, max_retries: int = 3) -> List[Dict[str, str]]:
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Safari/537.36'
]
for attempt in range(max_retries):
try:
headers = {'User-Agent': random.choice(user_agents)}
service = build("customsearch", "v1", developerKey=GOOGLE_API_KEY)
res = service.cse().list(q=query, cx=GOOGLE_CSE_ID, num=num_results).execute()
results = []
if "items" in res:
for item in res["items"]:
result = {
"title": item["title"],
"link": item["link"],
"snippet": item.get("snippet", "")
}
results.append(result)
return results
except Exception as e:
print(f"An error occurred: {e}. Attempt {attempt + 1} of {max_retries}")
time.sleep(2 ** attempt)
print("Max retries reached. No results found.")
return []
def scrape_webpage(url: str) -> str:
try:
response = requests.get(url, timeout=10)
soup = BeautifulSoup(response.content, 'html.parser')
return soup.get_text()
except Exception as e:
print(f"Error scraping {url}: {e}")
return ""
def process_documents(uploaded_files):
documents = []
for uploaded_file in uploaded_files:
file_extension = os.path.splitext(uploaded_file.name)[1].lower()
if file_extension == '.pdf':
loader = PyPDFLoader(uploaded_file)
elif file_extension in ['.txt', '.md']:
loader = TextLoader(uploaded_file)
elif file_extension in ['.doc', '.docx']:
loader = UnstructuredWordDocumentLoader(uploaded_file)
else:
st.warning(f"Unsupported file type: {file_extension}")
continue
documents.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
vectorstore = FAISS.from_documents(texts, embeddings)
graph = NetworkxEntityGraph()
graph.add_documents(texts)
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
qa_chain = RetrievalQA.from_chain_type(
llm=chat,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
return qa_chain, graph
def generate_questions(topic, difficulty, num_questions, include_answers, qa_chain=None, graph=None):
system_prompt = f"""You are an expert exam question generator. Generate {num_questions} {difficulty}-level questions about {topic}.
{"Each question should be followed by its correct answer." if include_answers else "Do not include answers."}
Format your response as follows:
Q1. [Question]
{"A1. [Answer]" if include_answers else ""}
Q2. [Question]
{"A2. [Answer]" if include_answers else ""}
... and so on.
"""
if qa_chain and graph:
context = graph.get_relevant_documents(topic)
context_text = "\n".join([doc.page_content for doc in context])
result = qa_chain({"query": system_prompt, "context": context_text})
questions = result['result']
else:
messages = [
SystemMessage(content=system_prompt),
HumanMessage(content=f"Please generate {num_questions} {difficulty} questions about {topic}.")
]
questions = chat(messages).content
return questions
def gather_resources(field: str) -> List[Dict[str, str]]:
resources = []
for resource_url in EDUCATIONAL_RESOURCES:
search_results = search_web(f"site:{resource_url} {field}", num_results=1)
if search_results:
result = search_results[0]
content = scrape_webpage(result['link'])
resources.append({
"title": result['title'],
"link": result['link'],
"content": content[:500] + "..." if len(content) > 500 else content
})
# YouTube search
youtube = build('youtube', 'v3', developerKey=YOUTUBE_API_KEY)
youtube_results = youtube.search().list(q=field, type='video', part='id,snippet', maxResults=5).execute()
for item in youtube_results.get('items', []):
video_id = item['id']['videoId']
resources.append({
"title": item['snippet']['title'],
"link": f"https://www.youtube.com/watch?v={video_id}",
"content": item['snippet']['description'],
"thumbnail": item['snippet']['thumbnails']['medium']['url']
})
return resources
def main():
st.set_page_config(page_title="Advanced Exam Preparation System", layout="wide")
st.sidebar.title("Advanced Exam Prep")
st.sidebar.markdown("""
Welcome to our advanced exam preparation system!
Here you can generate practice questions, explore educational resources,
and interact with an AI tutor to enhance your learning experience.
""")
# Main area tabs
tab1, tab2, tab3 = st.tabs(["Question Generator", "Resource Explorer", "Academic Tutor"])
with tab1:
st.header("Question Generator")
col1, col2 = st.columns(2)
with col1:
topic = st.text_input("Enter the exam topic:")
exam_type = st.selectbox("Select exam type:", ["General", "STEM", "Humanities", "Business", "Custom"])
with col2:
difficulty = st.select_slider(
"Select difficulty level:",
options=["Super Easy", "Easy", "Beginner", "Intermediate", "Higher Intermediate", "Master", "Advanced"]
)
num_questions = st.number_input("Number of questions:", min_value=1, max_value=50, value=5)
include_answers = st.checkbox("Include answers", value=True)
if st.button("Generate Questions", key="generate_questions"):
if topic:
with st.spinner("Generating questions..."):
questions = generate_questions(topic, difficulty, num_questions, include_answers)
st.success("Questions generated successfully!")
st.markdown(questions)
else:
st.warning("Please enter a topic.")
with tab2:
st.header("Resource Explorer")
selected_field = st.selectbox("Select a field to explore:", FIELDS)
if st.button("Explore Resources", key="explore_resources"):
with st.spinner("Gathering resources..."):
resources = gather_resources(selected_field)
st.success(f"Found {len(resources)} resources!")
for i, resource in enumerate(resources):
col1, col2 = st.columns([1, 3])
with col1:
if "thumbnail" in resource:
st.image(resource["thumbnail"], use_column_width=True)
else:
st.image("https://via.placeholder.com/150", use_column_width=True)
with col2:
st.subheader(f"[{resource['title']}]({resource['link']})")
st.write(resource['content'])
st.markdown("---")
with tab3:
st.header("Academic Tutor")
uploaded_files = st.file_uploader("Upload documents (PDF, TXT, MD, DOC, DOCX)", type=["pdf", "txt", "md", "doc", "docx"], accept_multiple_files=True)
if uploaded_files:
qa_chain, graph = process_documents(uploaded_files)
st.success("Documents processed successfully!")
else:
qa_chain, graph = None, None
st.subheader("Chat with AI Tutor")
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
chat_container = st.container()
with chat_container:
for i, (role, message) in enumerate(st.session_state.chat_history):
with st.chat_message(role):
st.write(message)
user_input = st.chat_input("Ask a question or type 'search: your query' to perform a web search:")
if user_input:
st.session_state.chat_history.append(("user", user_input))
with st.chat_message("user"):
st.write(user_input)
with st.chat_message("assistant"):
if user_input.lower().startswith("search:"):
search_query = user_input[7:].strip()
search_results = search_web(search_query, num_results=3)
response = f"Here are some search results for '{search_query}':\n\n"
for result in search_results:
response += f"- [{result['title']}]({result['link']})\n {result['snippet']}\n\n"
else:
response = chat([HumanMessage(content=user_input)]).content
st.write(response)
st.session_state.chat_history.append(("assistant", response))
# Scroll to bottom of chat
js = f"""
<script>
function scroll_to_bottom() {{
var chatElement = window.parent.document.querySelector('.stChatFloatingInputContainer');
chatElement.scrollIntoView({{behavior: 'smooth'}});
}}
scroll_to_bottom();
</script>
"""
st.components.v1.html(js)
if __name__ == "__main__":
main()
|