File size: 12,310 Bytes
30d06f3
ec4e3bf
360f4e7
3180e31
4b65fd2
f28c7ce
6c0ac6b
 
 
 
302316d
163a5a5
9067991
015696a
 
 
 
 
6c0ac6b
49c0f95
cbe1d01
0345f82
28f4321
64eb2f2
 
0345f82
64eb2f2
 
 
 
1b38d67
3180e31
 
 
 
 
14fa9b7
3180e31
 
 
 
 
14fa9b7
3180e31
 
 
 
 
 
98ce09e
 
 
14fa9b7
19a01a7
 
cbe1d01
c8902cc
 
31fc42e
 
 
 
9ca2069
 
ec4e3bf
6c0ac6b
142b484
 
457648b
142b484
9ca2069
e8afa15
7099e7c
e8afa15
9ca2069
163a5a5
28f4321
 
 
163a5a5
9198ac8
 
 
d0e3222
9198ac8
 
6c0ac6b
 
 
ce88b36
bc7f57e
 
 
ce88b36
bc7f57e
838522f
 
 
 
ce88b36
163a5a5
 
 
9198ac8
 
aaadcd8
 
 
 
9198ac8
aaadcd8
9198ac8
 
 
 
 
 
cbe1d01
 
3180e31
60d22a5
3180e31
cbe1d01
3180e31
 
 
 
 
cbe1d01
3180e31
 
 
9198ac8
9f48b8d
f92c145
6c0ac6b
 
 
 
 
 
 
 
 
163a5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c0ac6b
 
c62697b
6c0ac6b
 
19a01a7
9198ac8
142b484
bc7f57e
163a5a5
 
bc7f57e
 
90a0040
bc7f57e
0e3685f
838522f
bc7f57e
 
 
 
163a5a5
31fc42e
9ca2069
 
 
 
 
e8afa15
9ca2069
e8afa15
9ca2069
 
163a5a5
 
0e3685f
 
163a5a5
 
28f4321
163a5a5
28f4321
163a5a5
28f4321
71528c1
b0261c2
c76a369
457648b
 
 
 
c76a369
457648b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c76a369
 
457648b
789182c
457648b
 
 
11c1c93
087c393
ac9c974
 
 
087c393
1b38d67
087c393
1b38d67
087c393
930024a
087c393
28f4321
 
1b38d67
28f4321
 
 
 
 
 
1b38d67
336c637
1b38d67
9067991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4e3bf
6df0158
f7ed4e1
 
ac9c974
f7ed4e1
ec4e3bf
ac9c974
 
 
 
 
 
 
 
f28c7ce
 
163a5a5
 
 
 
 
 
 
 
 
 
360f4e7
0e3685f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os
import time
from io import BytesIO
from langchain_core.pydantic_v1 import BaseModel, Field
from fastapi import FastAPI, HTTPException, Query, Request
from fastapi.responses import StreamingResponse,Response
from fastapi.middleware.cors import CORSMiddleware

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from TextGen.suno import custom_generate_audio, get_audio_information,generate_lyrics
#from TextGen.diffusion import generate_image
#from coqui import predict
from langchain_google_genai import (
    ChatGoogleGenerativeAI,
    HarmBlockThreshold,
    HarmCategory,
)
from TextGen import app
from gradio_client import Client, handle_file
from typing import List
from elevenlabs.client import ElevenLabs
from elevenlabs import Voice, VoiceSettings, stream


Eleven_client = ElevenLabs(
  api_key=os.environ["ELEVEN_API_KEY"], # Defaults to ELEVEN_API_KEY
)


Last_message=None
class PlayLastMusic(BaseModel):
    '''plays the lastest created music '''
    Desicion: str = Field(
        ..., description="Yes or No"
    )

class CreateLyrics(BaseModel):
    f'''create some Lyrics for a new music'''
    Desicion: str = Field(
        ..., description="Yes or No"
    )

class CreateNewMusic(BaseModel):
    f'''create a new music with the Lyrics previously computed'''
    Name: str = Field(
        ..., description="tags to describe the new music"
    )

class SongRequest(BaseModel):
    prompt: str | None  = None
    tags: List[str] | None = None

class Message(BaseModel):
    npc: str | None  = None
    messages: List[str] | None = None
class ImageGen(BaseModel):
    prompt: str | None  = None  
class VoiceMessage(BaseModel):
    npc: str | None  = None
    input: str | None = None
    language: str | None = "en"
    genre:str | None = "Male"
    
song_base_api=os.environ["VERCEL_API"]

my_hf_token=os.environ["HF_TOKEN"]

#tts_client = Client("Jofthomas/xtts",hf_token=my_hf_token)

main_npcs={
    "Blacksmith":"./voices/Blacksmith.mp3",
    "Herbalist":"./voices/female.mp3",
    "Bard":"./voices/Bard_voice.mp3"
}
main_npcs_elevenlabs={
    "Blacksmith":"yYdk7n49vTsUKiXxnosS",
    "Herbalist":"143zSsxc4O5ifS97lPCa",
    "Bard":"143zSsxc4O5ifS97lPCa"
}
main_npc_system_prompts={
    "Blacksmith":"You are a blacksmith in a video game",
    "Herbalist":"You are an herbalist in a video game",
    "Witch":"You are a witch in a video game. You are disguised as a potion seller in a small city where adventurers come to challenge the portal. You are selling some magic spells in a UI that the player only sees. Don't event too much lore and just follow the standard role of a merchant.",
    "Bard":"You are a bard in a video game"
}
class Generate(BaseModel):
    text:str

class Rooms(BaseModel):
    rooms:List
    room_of_interest:List
    index_exit:int
    possible_entities:List

class Room_placements(BaseModel):
    placements:dict


class Invoke(BaseModel):
    system_prompt:str
    message:str

def generate_text(messages: List[str], npc:str):
    print(npc)
    if npc in main_npcs:
        system_prompt=main_npc_system_prompts[npc]
    else:
        system_prompt="you're a character in a video game. Play along."
    print(system_prompt)    
    new_messages=[{"role": "user", "content": system_prompt}]
    for index, message in enumerate(messages):
      if index%2==0:
        new_messages.append({"role": "user", "content": message})
      else:
        new_messages.append({"role": "assistant", "content": message})
    print(new_messages)
    # Initialize the LLM
    llm = ChatGoogleGenerativeAI(
        model="gemini-1.5-pro-latest",
        max_output_tokens=100,
        temperature=1,
        safety_settings={
                HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE
            },
    )
    if npc=="bard":
        llm = llm.bind_tools([PlayLastMusic,CreateNewMusic,CreateLyrics])

    llm_response = llm.invoke(new_messages)
    print(llm_response)
    return Generate(text=llm_response.content)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

def inference_model(system_messsage, prompt):
          
    new_messages=[{"role": "user", "content": system_messsage},{"role": "user", "content": prompt}]
    llm = ChatGoogleGenerativeAI(
        model="gemini-1.5-pro-latest",
        max_output_tokens=100,
        temperature=1,
        safety_settings={
                HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE
            },
    )
    llm_response = llm.invoke(new_messages)
    print(llm_response)
    return Generate(text=llm_response.content)

@app.get("/", tags=["Home"])
def api_home():
    return {'detail': 'Everchanging Quest backend, nothing to see here'}

@app.post("/api/generate", summary="Generate text from prompt", tags=["Generate"], response_model=Generate)
def inference(message: Message):
    return generate_text(messages=message.messages, npc=message.npc)

@app.post("/invoke_model")
def story(prompt: Invoke):
    return inference_model(system_messsage=prompt.system_prompt,prompt=prompt.message)
    
@app.post("/generate_level")
def placement(input: Rooms):
    print(input)
    markdown_map=generate_map_markdown(input)
    print(markdown_map)
    answer={
        "key":"value"
    }
    return answer

#Dummy function for now
def determine_vocie_from_npc(npc,genre):
    if npc in main_npcs:
        return main_npcs[npc]
    else:
        if genre =="Male":
            "./voices/default_male.mp3"
        if genre=="Female":
            return"./voices/default_female.mp3"
        else:
            return "./voices/narator_out.wav"
#Dummy function for now
def determine_elevenLav_voice_from_npc(npc,genre):
    if npc in main_npcs_elevenlabs:
        return main_npcs_elevenlabs[npc]
    else:
        if genre =="Male":
            "bIHbv24MWmeRgasZH58o"
        if genre=="Female":
            return"pFZP5JQG7iQjIQuC4Bku"
        else:
            return "TX3LPaxmHKxFdv7VOQHJ"    

@app.post("/generate_wav")
async def generate_wav(message: VoiceMessage):
#    try:
#        voice = determine_vocie_from_npc(message.npc, message.genre)
#        audio_file_pth = handle_file(voice)
#
        # Generator function to yield audio chunks
#        async def audio_stream():
#            result = tts_client.predict(
#                prompt=message.input,
#                language=message.language,
#                audio_file_pth=audio_file_pth,
#                mic_file_path=None,
#                use_mic=False,
#                voice_cleanup=False,
#                no_lang_auto_detect=False,
#                agree=True,
#                api_name="/predict"
#            )
#            for sampling_rate, audio_chunk in result:
#                yield audio_chunk.tobytes()
#                await asyncio.sleep(0)  # Yield control to the event loop

        # Return the generated audio as a streaming response
 #       return StreamingResponse(audio_stream(), media_type="audio/wav")

  #  except Exception as e:
   #     raise HTTPException(status_code=500, detail=str(e))
    return 200


@app.get("/generate_voice_eleven", response_class=StreamingResponse)
@app.post("/generate_voice_eleven", response_class=StreamingResponse)
def generate_voice_eleven(message: VoiceMessage = None):
    global Last_message  # Declare Last_message as global
    if message is None:
        message = Last_message
    else:
        Last_message = message

    def audio_stream():
        this_voice_id=determine_elevenLav_voice_from_npc(message.npc, message.genre)
        
        # Generate the audio stream from ElevenLabs
        for chunk in Eleven_client.generate(text=message.input,
                                            voice=Voice(
                                                voice_id=this_voice_id,
                                                settings=VoiceSettings(stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True)
                                            ),
                                            stream=True):
            yield chunk

    return StreamingResponse(audio_stream(), media_type="audio/mpeg")
#@app.get("/generate_voice_coqui", response_class=StreamingResponse)
#@app.post("/generate_voice_coqui", response_class=StreamingResponse)
#def generate_voice_coqui(message: VoiceMessage = None):
#    global Last_message 
#    if message is None:
#        message = Last_message
#    else:
#        Last_message = message
#
#    def audio_stream():
#        voice = determine_vocie_from_npc(message.npc, message.genre)
#        result = predict(
#                prompt=message.input,
#                language=message.language,
#                audio_file_pth=voice,
#                mic_file_path=None,
#                use_mic=False,
#                voice_cleanup=False,
#                no_lang_auto_detect=False,
#                agree=True,
#            )
#        # Generate the audio stream from ElevenLabs
#        for chunk in result:
#            print("received : ",chunk)
#            yield chunk#
#
#    return StreamingResponse(audio_stream(),media_type="audio/mpeg")   
@app.get("/generate_song")
async def generate_song():
    text="""You are a bard in a video game singing the tales of a little girl in red hood."""

    song_lyrics=generate_lyrics({
        "prompt": f"{text}",
        })
    data = custom_generate_audio({
        "prompt": song_lyrics['text'],
        "tags": "male bard",
        "title":"Everchangin_Quest_song",
        "wait_audio":True,
       
    })
    infos=get_audio_information(f"{data[0]['id']},{data[1]['id']}")
    return infos

#@app.post('/generate_image')
#def Imagen(image:ImageGen=None):
#    pil_image =generate_image(image.prompt)
#    
#
#    # Convert the PIL Image to bytes
#    img_byte_arr = BytesIO()
#    pil_image.save(img_byte_arr, format='PNG')
#    img_byte_arr = img_byte_arr.getvalue()
#
    # Return the image as a PNG response
#    return Response(content=img_byte_arr, media_type="image/png")

def generate_map_markdown(data):
    import numpy as np
    
    # Define the room structure with walls and markers
    def create_room(room_char):
        return [
            f"╔═══╗",
            f"β•‘ {room_char} β•‘",
            f"β•šβ•β•β•β•"
        ]
    
    # Extract rooms and rooms of interest
    rooms = [eval(room) for room in data["rooms"]]
    rooms_of_interest = [eval(room) for room in data["room_of_interest"]]
    
    # Determine grid size
    min_x = min(room[0] for room in rooms)
    max_x = max(room[0] for room in rooms)
    min_y = min(room[1] for room in rooms)
    max_y = max(room[1] for room in rooms)
    
    # Create grid with empty spaces represented by a room-like structure
    map_height = (max_y - min_y + 1) * 3
    map_width = (max_x - min_x + 1) * 5
    grid = np.full((map_height, map_width), " ")
    
    # Populate grid with rooms and their characteristics
    for i, room in enumerate(rooms):
        x, y = room
        x_offset = (x - min_x) * 5
        y_offset = (max_y - y) * 3
        if room == (0, 0):
            room_char = "X"
        elif room in rooms_of_interest:
            room_char = "P" if i == data["index_exit"] else "?"
        else:
            room_char = " "
        room_structure = create_room(room_char)
        for j, row in enumerate(room_structure):
            grid[y_offset + j, x_offset:x_offset + 5] = list(row)
    
    # Convert grid to a string format suitable for display
    markdown_map = "\n".join("".join(row) for row in grid)
    
    # Return the map wrapped in triple backticks for proper display in markdown
    return f"```\n{markdown_map}\n```"