File size: 4,389 Bytes
30d06f3
ec4e3bf
6c0ac6b
4b65fd2
142b484
6c0ac6b
 
 
 
dd17730
015696a
 
 
 
 
6c0ac6b
4c1fca2
 
19a01a7
 
 
 
31fc42e
 
 
 
 
9ca2069
 
ec4e3bf
6c0ac6b
142b484
 
27ed5a9
142b484
 
9ca2069
 
 
 
6c0ac6b
 
 
 
 
 
 
 
 
015696a
 
 
 
 
 
6c0ac6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19a01a7
 
142b484
31fc42e
9ca2069
 
 
 
 
 
 
 
 
 
31fc42e
b0261c2
31fc42e
142b484
9ca2069
142b484
 
31fc42e
 
27fbf7a
 
142b484
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4e3bf
 
4b65fd2
ec4e3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import time
from pydantic import BaseModel
from fastapi import FastAPI, HTTPException, Query, Request
from fastapi.responses import FileResponse
from fastapi.middleware.cors import CORSMiddleware

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from TextGen.suno import custom_generate_audio, get_audio_information
from langchain_google_genai import (
    ChatGoogleGenerativeAI,
    HarmBlockThreshold,
    HarmCategory,
)
from TextGen import app
from gradio_client import Client


class Message(BaseModel):
    npc: str | None  = None
    input: str | None = None
    
class VoiceMessage(BaseModel):
    npc: str | None  = None
    input: str | None = None
    language: str | None = "en"
    genre:str | None = "Male"
    
song_base_api=os.environ["VERCEL_API"]

my_hf_token=os.environ["HF_TOKEN"]

tts_client = Client("https://jofthomas-xtts.hf.space/",hf_token=my_hf_token)


main_npcs={
    "Blacksmith":"./voices/blacksmith.mp3",
    "Herbalist":"./voices/female.wav"
}
class Generate(BaseModel):
    text:str

def generate_text(prompt: str):
    if prompt == "":
        return {"detail": "Please provide a prompt."}
    else:
        prompt = PromptTemplate(template=prompt, input_variables=['Prompt'])

        # Initialize the LLM
        llm = ChatGoogleGenerativeAI(
            model="gemini-pro",
            safety_settings={
                HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
            },
        )

        llmchain = LLMChain(
            prompt=prompt,
            llm=llm
        )

        llm_response = llmchain.run({"Prompt": prompt})
        return Generate(text=llm_response)

        

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/", tags=["Home"])
def api_home():
    return {'detail': 'Welcome to FastAPI TextGen Tutorial!'}

@app.post("/api/generate", summary="Generate text from prompt", tags=["Generate"], response_model=Generate)
def inference(message: Message):
    return generate_text(prompt=message.input)

#Dummy function for now
def determine_vocie_from_npc(npc,genre):
    if npc in main_npcs:
        return main_npcs[npc]
    else:
        if genre =="Male":
            "./voices/blacksmith.mp3"
        if genre=="Female":
            return"./voices/female.wav"
        else:
            return "./voices/narator_out.wav"
    
@app.post("/generate_wav")
async def generate_wav(message:VoiceMessage):
    try:
        voice=determine_vocie_from_npc(message.npc, message.genre)
        # Use the Gradio client to generate the wav file
        result = tts_client.predict(
            message.input,  # str in 'Text Prompt' Textbox component
            message.language,  # str in 'Language' Dropdown component
            voice,  # str (filepath on your computer (or URL) of file) in 'Reference Audio' Audio component
            voice,  # str (filepath on your computer (or URL) of file) in 'Use Microphone for Reference' Audio component
            False,  # bool in 'Use Microphone' Checkbox component
            False,  # bool in 'Cleanup Reference Voice' Checkbox component
            False,  # bool in 'Do not use language auto-detect' Checkbox component
            True,  # bool in 'Agree' Checkbox component
            fn_index=1
        )

        # Get the path of the generated wav file
        wav_file_path = result[1]

        # Return the generated wav file as a response
        return FileResponse(wav_file_path, media_type="audio/wav", filename="output.wav")

    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.get("/generate_song")
async def generate_song(text: str):
    try:
        data = custom_generate_audio({
            "prompt": f"{text}",
            "make_instrumental": False,
            "wait_audio": False
        })
        ids = f"{data[0]['id']},{data[1]['id']}"
        print(f"ids: {ids}")

        for _ in range(60):
            data = get_audio_information(ids)
            if data[0]["status"] == 'streaming':
                print(f"{data[0]['id']} ==> {data[0]['audio_url']}")
                print(f"{data[1]['id']} ==> {data[1]['audio_url']}")
                break
            # sleep 5s
            time.sleep(5)
    except:
        print("Error")