File size: 2,659 Bytes
3d28f03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6c76e8
3d28f03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import streamlit as st
import pandas as pd
import numpy as np
import pickle
import json


# Load data yang sudah dibuat di model
with open('pipe.pkl', 'rb') as file1:
    pipe = pickle.load(file1)

with open('random_best.pkl', 'rb') as file2:
    km = pickle.load(file2)

def run():
    # Membuat form
    with st.form(key='credit card default payment next month'):
        id = st.number_input('Serial ID', 0, 1000000, 100, help='id dalam bentuk angka')
        Flight = st.number_input('Flight', min_value=202, max_value=10000, value=2000, step=1, help='input nomor penerbangan')
        Airline = st.selectbox('Maskapai', ('CO', 'US','AA', 'AS', 'DL', 'B6', 'HA', 'OO', '9E', 'OH', 'EV', 'XE', 'YV', 'UA', 'MQ', 'FL', 'F9', 'WN' ), help='maskaapinya keterangannya ada di google')
        AirportFrom = st.selectbox('Airport From ', ('SFO', 'PHX', 'LAX', 'ANC', 'LAS', 'SLC', 'DEN', 'ONT'), help='nama bandara untuk keterangan lebih lanjut silahkan lihat di google')
        AirportTo = st.selectbox('Airport To ', ('SFO', 'PHX', 'LAX', 'ANC', 'LAS', 'SLC', 'DEN', 'ONT'), help='nama bandara untuk keterangan lebih lanjut silahkan lihat di google')
        DayOfWeek = st.selectbox('Hari ', (1, 2, 3, 4, 5, 6, 7), help='input daalam bentuk hari 1=senin , 2= selasa, 3= rabu, 4= kamis, 5= jumat, 6= Sabtu, 7= minggu')
        Time = st.number_input('waktu', min_value=15, max_value=1000, value=999, step=1, help='input lama waktu penerbangan')
        Length = st.number_input('jarak penerbangan', min_value=205, max_value=9999, value=2000, step=1, help='input jarak penerbangan')
        submitted = st.form_submit_button('Predict')
        st.write("---")

    #buat dataframe yang telah dimasukkan
    data_inf = {
        'id': id, 
        'Airline': Flight, 
        'Flight': Airline, 
        'AirportFrom': AirportFrom,
        'AirportTo': AirportTo, 
        'DayOfWeek': DayOfWeek, 
        'Time': Time, 
        'Length': Length,
}
    data_inf = pd.DataFrame([data_inf])
    st.dataframe(data_inf)

    if submitted:
        # Predict probabilities for the test set
        probabilities = pipe.predict_proba(data_inf)
        max_prob_indexes = np.argmax(probabilities, axis=1)
        max_probabilities = probabilities[np.arange(len(probabilities)), max_prob_indexes]
        prediksi = pipe.predict(data_inf)

        # Ganti nilai-nilai di dalam array
        prediksi_asli = np.where(prediksi == 1, 'delay', 'tidak delay')
        print(probabilities)
        st.write(f'prediksi 0 sebesar {probabilities[:, 0]} dan prediksi 1 sebesar {probabilities[:,1]} jadi diprediksi sebagai {prediksi_asli}')




if __name__ == '__main__':
    run()