File size: 10,754 Bytes
f7b283c
 
7a0020b
5b413d1
7a0020b
 
f7b283c
 
7a0020b
f7b283c
7a0020b
 
71ca212
7a0020b
a763857
64e7c31
f7b283c
 
 
3ea7670
 
f7b283c
 
 
64e7c31
a763857
71ca212
f7b283c
71ca212
 
 
 
 
e5be70f
 
 
 
f7b283c
71ca212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b283c
a763857
f7b283c
 
71ca212
f7b283c
7a0020b
 
 
f7b283c
 
71ca212
f7b283c
 
 
7a0020b
 
 
f7b283c
71ca212
f7b283c
71ca212
a763857
7a0020b
f7b283c
a763857
7a0020b
f7b283c
 
7a0020b
 
 
a763857
f7b283c
 
7a0020b
 
 
 
a763857
7a0020b
 
 
 
 
a763857
7a0020b
f7b283c
a763857
 
 
f7b283c
a763857
 
71ca212
64e7c31
f7b283c
a763857
71ca212
f7b283c
 
 
71ca212
a763857
 
7a0020b
f7b283c
 
 
a763857
f7b283c
 
 
 
a763857
f7b283c
 
a763857
f7b283c
7a0020b
71ca212
7a0020b
 
 
 
a763857
7a0020b
a763857
f7b283c
 
7a0020b
 
 
 
 
71ca212
7a0020b
 
 
 
f7b283c
 
a763857
7a0020b
 
 
 
 
a763857
7a0020b
 
 
 
a763857
7a0020b
a763857
7a0020b
71ca212
 
 
7a0020b
 
f7b283c
a763857
7a0020b
a763857
f7b283c
7a0020b
 
 
 
 
 
a763857
7a0020b
f7b283c
7a0020b
 
 
 
f7b283c
a763857
f7b283c
 
 
 
 
 
7a0020b
 
 
 
 
a763857
 
 
 
 
 
 
 
 
71ca212
a763857
 
f7b283c
7a0020b
 
 
 
 
 
a763857
f7b283c
a763857
7a0020b
f7b283c
 
7a0020b
f7b283c
 
a763857
7a0020b
 
f7b283c
7a0020b
f7b283c
7a0020b
f7b283c
a763857
7a0020b
 
f7b283c
7a0020b
 
a763857
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from typing import Dict, List, Tuple, Any, Optional
import numpy as np
import random
from logger_config import config_logger
from cross_encoder_reranker import CrossEncoderReranker

logger = config_logger(__name__)


class ChatbotValidator:
    """
    Handles automated validation and performance analysis for the chatbot.
    This testing module executes domain-specific queries, obtains chatbot responses, and evaluates them with a quality checker. 
    """
    
    def __init__(self, chatbot, quality_checker, cross_encoder_model='cross-encoder/ms-marco-MiniLM-L-12-v2'):
        """
        Initialize the validator.
        Args:
            chatbot: RetrievalChatbot for inference
            quality_checker: ResponseQualityChecker
        """
        self.chatbot = chatbot
        self.quality_checker = quality_checker
        self.reranker = CrossEncoderReranker(model_name=cross_encoder_model)
        
        # Domain-specific test queries (aligns with Taskmaster-1 dataset)
        self.domain_queries = {
            'restaurant': [
                "Hi, I have a question about your restaurant. Do they take reservations?",
                "I'd like to make a reservation for dinner tonight after 6pm. Is that time available?",
                "Can you recommend an Italian restaurant with wood-fired pizza?",
            ],
            'movie': [
                "How much are movie tickets for two people?",
                "I'm looking for showings after 6pm?",
                "Is this at the new theater with reclining seats?",
            ],
            'ride_share': [
                "I need a ride from the airport to downtown.",
                "What is the cost for Lyft? How about Uber XL?",
                "Can you book a car for tomorrow morning?",
            ],
            'coffee': [
                "Can I customize my coffee?",
                "Can I order a mocha from you?",
                "Can I get my usual venti vanilla latte?",
            ],
            'pizza': [
                "Do you have any pizza specials or deals available?",
                "How long is the wait until the pizza is ready and delivered to me?",
                "Please repeat my pizza order for two medium pizzas with thick crust.",
            ],
            'auto': [
                "The car is making a funny noise when I turn, and I'm due for an oil change.",
                "Is my buddy John available to work on my car?",
                "My Jeep needs a repair. Can you help me with that?",
            ],
        }
        
    def run_validation(
        self,
        num_examples: int = 3,
        top_k: int = 10,
        domains: Optional[List[str]] = None,
        randomize: bool = False,
        seed: int = 42
    ) -> Dict[str, Any]:
        """
        Run validation across testable domains.
        Args:
            num_examples: Number of test queries per domain
            top_k: Number of responses to retrieve for each query
            domains: Optional list of domain keys to test. If None, test all.
            randomize: If True, randomly select queries from the domain lists
            seed: Random seed for consistent sampling if randomize=True
        Returns:
            Dict with validation metrics
        """
        logger.info("\n=== Running Automatic Validation ===")
        
        # Select which domains to test
        test_domains = domains if domains else list(self.domain_queries.keys())
        
        # Initialize results
        metrics_history = []
        domain_metrics = {}
        
        # Prepare random selection if needed
        rng = random.Random(seed)
        
        # Run validation for each domain
        for domain in test_domains:
            # Avoid errors if domain key missing
            if domain not in self.domain_queries:
                logger.warning(f"Domain '{domain}' not found in domain_queries. Skipping.")
                continue
            
            all_queries = self.domain_queries[domain]
            if randomize:
                queries = rng.sample(all_queries, min(num_examples, len(all_queries)))
            else:
                queries = all_queries[:num_examples]
                
            # Store domain-level metrics
            domain_metrics[domain] = []
            
            logger.info(f"\n=== Testing {domain.title()} Domain ===\n")
            
            for i, query in enumerate(queries, 1):
                logger.info(f"TEST CASE {i}: QUERY: {query}")
                
                # Retrieve top_k responses, then evaluate with quality checker
                responses = self.chatbot.retrieve_responses(query, top_k=top_k, reranker=self.reranker)
                quality_metrics = self.quality_checker.check_response_quality(query, responses)
                
                # Aggregate metrics and log
                quality_metrics['domain'] = domain
                metrics_history.append(quality_metrics)
                domain_metrics[domain].append(quality_metrics)
                self._log_validation_results(query, responses, quality_metrics)
                logger.info(f"Quality metrics: {quality_metrics}\n")
        
        # Final aggregation
        aggregate_metrics = self._calculate_aggregate_metrics(metrics_history)
        domain_analysis = self._analyze_domain_performance(domain_metrics)
        confidence_analysis = self._analyze_confidence_distribution(metrics_history)
        
        aggregate_metrics.update({
            'domain_performance': domain_analysis,
            'confidence_analysis': confidence_analysis
        })
        
        self._log_validation_summary(aggregate_metrics)
        return aggregate_metrics
    
    def _calculate_aggregate_metrics(self, metrics_history: List[Dict]) -> Dict[str, float]:
        """
        Calculate aggregate metrics over tested queries.
        """
        if not metrics_history:
            logger.warning("No metrics to aggregate. Returning empty summary.")
            return {}
        
        top_scores = [m.get('top_score', 0.0) for m in metrics_history]
        
        metrics = {
            'num_queries_tested': len(metrics_history),
            'avg_top_response_score': np.mean(top_scores),
            'avg_diversity': np.mean([m.get('response_diversity', 0.0) for m in metrics_history]),
            'avg_relevance': np.mean([m.get('query_response_relevance', 0.0) for m in metrics_history]),
            'avg_length_score': np.mean([m.get('response_length_score', 0.0) for m in metrics_history]),
            'avg_score_gap': np.mean([m.get('top_3_score_gap', 0.0) for m in metrics_history]),
            'confidence_rate': np.mean([1.0 if m.get('is_confident', False) else 0.0 for m in metrics_history]),
            'median_top_score': np.median(top_scores),
            'score_std': np.std(top_scores),
            'min_score': np.min(top_scores),
            'max_score': np.max(top_scores)
        }
        return metrics
    
    def _analyze_domain_performance(self, domain_metrics: Dict[str, List[Dict]]) -> Dict[str, Dict[str, float]]:
        """
        Analyze performance by domain, returning a nested dict.
        """
        analysis = {}
        
        for domain, metrics_list in domain_metrics.items():
            if not metrics_list:
                analysis[domain] = {}
                continue
            
            top_scores = [m.get('top_score', 0.0) for m in metrics_list]
            
            analysis[domain] = {
                'confidence_rate': np.mean([1.0 if m.get('is_confident', False) else 0.0 for m in metrics_list]),
                'avg_relevance': np.mean([m.get('query_response_relevance', 0.0) for m in metrics_list]),
                'avg_diversity': np.mean([m.get('response_diversity', 0.0) for m in metrics_list]),
                'avg_top_score': np.mean(top_scores),
                'num_samples': len(metrics_list)
            }
        
        return analysis
    
    def _analyze_confidence_distribution(self, metrics_history: List[Dict]) -> Dict[str, float]:
        """
        Analyze the distribution of top scores to gauge system confidence levels.
        """
        if not metrics_history:
            return {'percentile_25': 0.0, 'percentile_50': 0.0, 
                    'percentile_75': 0.0, 'percentile_90': 0.0}
        
        scores = [m.get('top_score', 0.0) for m in metrics_history]
        return {
            'percentile_25': float(np.percentile(scores, 25)),
            'percentile_50': float(np.percentile(scores, 50)),
            'percentile_75': float(np.percentile(scores, 75)),
            'percentile_90': float(np.percentile(scores, 90))
        }
    
    def _log_validation_results(
        self, 
        query: str, 
        responses: List[Tuple[str, float]], 
        metrics: Dict[str, Any],
    ):
        """
        Log detailed validation results for each test case.
        """
        domain = metrics.get('domain', 'Unknown')
        is_confident = metrics.get('is_confident', False)
        
        logger.info(f"DOMAIN: {domain} | CONFIDENCE: {'Yes' if is_confident else 'No'}")
        
        if is_confident or responses[0][1] >= 0.5:
            logger.info(f"SELECTED RESPONSE: '{responses[0][0]}'")
        else:
            logger.info("SELECTED RESPONSE: NONE (Low Confidence)")
        
        logger.info("   Top 3 Responses:")
        for i, (resp_text, score) in enumerate(responses[:3], 1):
            logger.info(f"   {i}) Score: {score:.4f} | {resp_text}")
            
    def _log_validation_summary(self, metrics: Dict[str, Any]):
        """
        Log a summary of all validation metrics and domain performance.
        """
        if not metrics:
            logger.info("No metrics to summarize.")
            return
        
        logger.info("\n=== Validation Summary ===")
        
        # Overall
        logger.info("\nOverall Metrics:")
        for metric, value in metrics.items():
            # Skip sub-dicts here
            if isinstance(value, (int, float)):
                logger.info(f"{metric}: {value:.4f}")
        
        # Domain performance
        domain_perf = metrics.get('domain_performance', {})
        logger.info("\nDomain Performance:")
        for domain, domain_stats in domain_perf.items():
            logger.info(f"\n{domain.title()}:")
            for metric, value in domain_stats.items():
                logger.info(f"  {metric}: {value:.4f}")
        
        # Confidence distribution
        conf_analysis = metrics.get('confidence_analysis', {})
        logger.info("\nConfidence Distribution:")
        for pct, val in conf_analysis.items():
            logger.info(f"  {pct}: {val:.4f}")