File size: 46,011 Bytes
5b413d1
d53c64b
64e7c31
f7b283c
74af405
f7b283c
 
 
 
 
 
9decf80
7a0020b
f7b283c
 
 
64e7c31
 
9decf80
f7b283c
9decf80
 
 
f7b283c
c7c1b4e
 
 
f7b283c
 
d7fc7a7
 
 
 
64e7c31
74af405
 
 
 
 
 
9b5daff
5b413d1
74af405
64e7c31
74af405
f7b283c
 
74af405
9b5daff
f7b283c
d7fc7a7
5b413d1
64e7c31
 
5b413d1
74af405
5b413d1
 
64e7c31
5b413d1
 
 
 
 
 
 
f7b283c
5b413d1
 
 
 
 
 
 
 
f7b283c
 
 
 
 
 
 
74af405
 
 
 
 
 
 
 
 
 
 
3ea7670
74af405
 
 
5b413d1
 
d7fc7a7
c7c1b4e
5b413d1
 
 
74af405
64e7c31
 
 
 
5b413d1
9decf80
5b413d1
 
9decf80
d7fc7a7
 
5b413d1
 
d7fc7a7
 
5b413d1
 
 
 
9decf80
5b413d1
 
 
 
 
 
9decf80
 
5b413d1
9decf80
64e7c31
5b413d1
 
64e7c31
5b413d1
9decf80
d7fc7a7
64e7c31
 
 
 
 
 
 
9decf80
d7fc7a7
5b413d1
9decf80
64e7c31
 
 
 
 
 
7a0020b
64e7c31
 
 
 
5b413d1
 
 
 
d7fc7a7
9decf80
5b413d1
7a0020b
5b413d1
 
 
9decf80
5b413d1
9decf80
5b413d1
7a0020b
5b413d1
 
 
 
9decf80
5b413d1
9decf80
5b413d1
 
 
 
 
 
 
9decf80
5b413d1
9decf80
64e7c31
5b413d1
64e7c31
5b413d1
 
f7b283c
5b413d1
 
 
64e7c31
 
 
 
e5be70f
d7fc7a7
f7b283c
 
7a0020b
f7b283c
 
64e7c31
 
f7b283c
 
d7fc7a7
7a0020b
 
64e7c31
 
 
 
 
7a0020b
 
f7b283c
d7fc7a7
 
 
64e7c31
f7b283c
64e7c31
f7b283c
64e7c31
 
 
7a0020b
c7c1b4e
cc2577d
c7c1b4e
 
64e7c31
cc2577d
 
64e7c31
cc2577d
7a0020b
c7c1b4e
 
 
 
 
 
 
 
 
 
 
64e7c31
e5be70f
64e7c31
3ea7670
64e7c31
 
7a0020b
64e7c31
7a0020b
64e7c31
 
 
 
 
 
 
 
 
 
 
7a0020b
cc2577d
e5be70f
cc2577d
c7c1b4e
7a0020b
c7c1b4e
 
7a0020b
 
 
 
e5be70f
7a0020b
d7fc7a7
 
 
 
 
 
 
 
 
7a0020b
e5be70f
d7fc7a7
e5be70f
7a0020b
e5be70f
 
7a0020b
e5be70f
 
cc2577d
e5be70f
 
 
 
cc2577d
e5be70f
 
 
cc2577d
 
 
7a0020b
e5be70f
7a0020b
 
 
 
c7c1b4e
7a0020b
 
e5be70f
 
 
 
 
 
7a0020b
f7b283c
7a0020b
 
 
 
5b413d1
7a0020b
 
e5be70f
7a0020b
d7fc7a7
7a0020b
e5be70f
 
7a0020b
a763857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c1b4e
a763857
 
 
 
 
 
 
 
 
 
 
 
c7c1b4e
a763857
 
5b413d1
 
 
 
 
7a0020b
5b413d1
 
d7fc7a7
5b413d1
 
 
cc2577d
5b413d1
 
cc2577d
a763857
5b413d1
 
 
 
 
 
cc2577d
 
a763857
cc2577d
5b413d1
a763857
 
 
 
 
 
 
c7c1b4e
a763857
 
c7c1b4e
f7b283c
5b413d1
 
 
 
 
 
 
d7fc7a7
64e7c31
 
d7fc7a7
64e7c31
 
 
5b413d1
64e7c31
 
5b413d1
 
64e7c31
 
 
 
 
5b413d1
64e7c31
5b413d1
f7b283c
f5346f7
f7b283c
 
 
 
 
5b413d1
f7b283c
 
 
5b413d1
 
9decf80
d53c64b
 
 
 
 
d7fc7a7
 
 
d53c64b
f5346f7
d53c64b
9b5daff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d53c64b
 
 
f5346f7
 
 
 
2183656
f5346f7
 
 
f7b283c
d7fc7a7
f7b283c
9decf80
2183656
9decf80
 
 
 
d53c64b
f7b283c
 
 
 
d53c64b
f7b283c
 
 
 
 
d53c64b
f7b283c
 
d7fc7a7
c7c1b4e
d53c64b
 
 
 
 
 
 
5b413d1
fc5f33b
 
d53c64b
 
 
d7fc7a7
d53c64b
 
 
 
 
5b413d1
f7b283c
d7fc7a7
5b413d1
d53c64b
 
d7fc7a7
d53c64b
 
 
 
d7fc7a7
 
 
7a0020b
 
 
 
 
d53c64b
5b413d1
d53c64b
5b413d1
d53c64b
fc5f33b
d53c64b
 
 
 
 
 
 
 
5b413d1
 
 
d53c64b
d7fc7a7
d53c64b
5b413d1
d53c64b
d7fc7a7
d53c64b
 
 
 
 
 
 
7a0020b
d7fc7a7
 
 
 
7a0020b
 
5b413d1
 
d53c64b
5b413d1
d53c64b
 
f7b283c
 
 
 
 
 
 
 
d7fc7a7
d53c64b
f5346f7
d7fc7a7
 
5b413d1
d7fc7a7
5b413d1
 
d53c64b
5b413d1
 
 
fc5f33b
5b413d1
 
 
d53c64b
 
5b413d1
 
 
d7fc7a7
d53c64b
c7c1b4e
d53c64b
 
d7fc7a7
d53c64b
f5346f7
 
d7fc7a7
d53c64b
5b413d1
 
 
d7fc7a7
fc5f33b
5b413d1
 
d7fc7a7
9decf80
f7b283c
 
d7fc7a7
fc5f33b
 
 
d7fc7a7
d53c64b
2183656
d7fc7a7
2183656
d53c64b
 
 
 
 
2183656
 
 
 
d7fc7a7
 
2183656
5b413d1
2183656
 
 
 
 
5b413d1
d53c64b
 
 
9decf80
2183656
 
 
 
 
9decf80
2183656
 
 
 
d53c64b
 
2183656
 
 
d7fc7a7
2183656
d7fc7a7
d53c64b
2183656
 
d7fc7a7
2183656
 
d7fc7a7
 
d53c64b
2183656
d7fc7a7
9decf80
2183656
 
 
 
 
d7fc7a7
d53c64b
fc5f33b
d7fc7a7
2183656
d53c64b
 
 
fc5f33b
d7fc7a7
fc5f33b
2183656
 
fc5f33b
2183656
d7fc7a7
2183656
 
 
 
 
 
d7fc7a7
2183656
d7fc7a7
2183656
 
d7fc7a7
fc5f33b
d53c64b
 
fc5f33b
 
 
 
d53c64b
fc5f33b
d7fc7a7
2183656
 
d7fc7a7
d53c64b
2183656
 
 
d7fc7a7
d53c64b
2183656
 
 
 
d7fc7a7
2183656
 
d7fc7a7
 
5b413d1
 
 
d7fc7a7
d53c64b
2183656
 
 
5b413d1
d53c64b
 
 
 
 
 
 
 
 
 
 
 
 
d7fc7a7
d53c64b
 
 
 
d7fc7a7
d53c64b
2183656
 
 
 
 
 
 
 
 
 
d7fc7a7
f5346f7
 
9decf80
2183656
 
 
 
f5346f7
2183656
 
f5346f7
2183656
9decf80
d7fc7a7
2183656
 
 
 
 
 
d7fc7a7
2183656
 
 
 
 
 
d7fc7a7
 
 
2183656
d7fc7a7
d53c64b
 
9decf80
2183656
 
9decf80
d53c64b
2183656
d7fc7a7
9decf80
d53c64b
 
5b413d1
d53c64b
5b413d1
9decf80
5b413d1
 
9decf80
 
2183656
 
 
 
f5346f7
2183656
 
f5346f7
d7fc7a7
2183656
9decf80
 
 
2183656
 
 
 
 
 
 
 
 
 
 
 
 
d53c64b
d7fc7a7
d53c64b
9decf80
2183656
 
9decf80
d53c64b
2183656
9decf80
f7b283c
 
 
 
 
 
 
d7fc7a7
 
 
f7b283c
 
 
 
 
 
 
 
 
 
 
d7fc7a7
f7b283c
 
 
d7fc7a7
d53c64b
 
f7b283c
 
 
 
 
 
 
 
 
 
 
d7fc7a7
d53c64b
f7b283c
 
d7fc7a7
d53c64b
 
 
 
f7b283c
 
 
 
d7fc7a7
f7b283c
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
import os
import numpy as np
from sentence_transformers import SentenceTransformer
import tensorflow as tf
from typing import List, Tuple, Dict, Optional, Union, Any
import math
from dataclasses import dataclass
import json
from pathlib import Path
import datetime       
import faiss
import gc
import re
from response_quality_checker import ResponseQualityChecker
from cross_encoder_reranker import CrossEncoderReranker
from conversation_summarizer import DeviceAwareModel, Summarizer
from chatbot_config import ChatbotConfig
from tf_data_pipeline import TFDataPipeline
import absl.logging
from logger_config import config_logger
from tqdm.auto import tqdm

absl.logging.set_verbosity(absl.logging.WARNING)
logger = config_logger(__name__)
logger.setLevel("WARNING")
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
tqdm(disable=True)
        
class RetrievalChatbot(DeviceAwareModel):
    """
    Retrieval-based learning chatbot model.
    Uses trained embeddings and FAISS for similarity search.
    """
    
    def __init__(
        self,
        config: ChatbotConfig,
        device: str = None,
        strategy=None,
        reranker: Optional[CrossEncoderReranker] = None,
        summarizer: Optional[Summarizer] = None,
        mode: str = 'training' 
    ):
        
        super().__init__()
        self.config = config
        self.strategy = strategy
        self.device = device or self._setup_default_device()
        self.mode = mode.lower()
        
        # Initialize reranker, summarizer, tokenizer, and encoder
        self.encoder = self._initialize_encoder()
        self.tokenizer = self.encoder.tokenizer
        self.reranker = reranker or self._initialize_reranker()
        self.summarizer = summarizer or self._initialize_summarizer()
        
        # Initialize data pipeline
        logger.info("Initializing TFDataPipeline.")
        
        self.data_pipeline = TFDataPipeline(
            config=self.config,
            tokenizer=self.tokenizer,
            encoder=self.encoder,
            response_pool=[],
            query_embeddings_cache={},
        )
        
        # Collect unique responses from dialogues
        if self.mode == 'inference':
            logger.info("Mode set to 'inference'. Loading FAISS index and response pool.")
            self._load_faiss_index_and_responses()
        elif self.mode != 'training':
            logger.error(f"Unsupported mode in RetrievalChatbot init: {self.mode}")
            raise ValueError(f"Unsupported mode in RetrievalChatbot init: {self.mode}")
            
        # Initialize training history
        self.history = {
            "train_loss": [],
            "val_loss": [],
            "train_metrics": {},
            "val_metrics": {}
        }
    
    def _setup_default_device(self) -> str:
        """Set up default device if none is provided."""
        if tf.config.list_physical_devices('GPU'):
            return 'GPU'
        else:
            return 'CPU'

    def _initialize_reranker(self) -> CrossEncoderReranker:
        """Initialize the CrossEncoderReranker."""
        logger.info("Initializing default CrossEncoderReranker...")
        return CrossEncoderReranker(model_name=self.config.cross_encoder_model)

    def _initialize_summarizer(self) -> Summarizer:
        """Initialize the Summarizer."""
        return Summarizer(
            tokenizer=self.tokenizer,
            model_name=self.config.summarizer_model,
            max_summary_length=self.config.max_context_length // 4,
            device=self.device,
            max_summary_rounds=2
        )
    
    def _initialize_encoder(self) -> SentenceTransformer:
        """Initialize the Sentence Transformer model."""
        logger.info("Initializing SentenceTransformer encoder model...")
        encoder = SentenceTransformer(self.config.pretrained_model)
        return encoder
    
    def _load_faiss_index_and_responses(self) -> None:
        """Load FAISS index and response pool for inference."""
        try:
            logger.info(f"Loading FAISS index from {self.data_pipeline.faiss_index_file_path}...")
            self.data_pipeline.load_faiss_index(self.data_pipeline.faiss_index_file_path)
            logger.info("FAISS index loaded successfully.")
            
            # Load response pool
            response_pool_path = self.data_pipeline.faiss_index_file_path.replace('.index', '_responses.json')
            if os.path.exists(response_pool_path):
                with open(response_pool_path, 'r', encoding='utf-8') as f:
                    self.data_pipeline.response_pool = json.load(f)
                logger.info(f"Loaded {len(self.data_pipeline.response_pool)} responses from {response_pool_path}.")
            else:
                logger.error(f"Response pool file not found at {response_pool_path}.")
                raise FileNotFoundError(f"Response pool file not found at {response_pool_path}.")
                
            # Validate FAISS index and response pool
            self.data_pipeline.validate_faiss_index()
            logger.info("FAISS index and response pool validated successfully.")
            
        except Exception as e:
            logger.error(f"Failed to load FAISS index and response pool: {e}")
            raise
        
    @classmethod
    def load_model(cls, load_dir: Union[str, Path], mode: str = 'training') -> 'RetrievalChatbot':
        """Load chatbot model and configuration."""
        load_dir = Path(load_dir)
        
        # Load config
        config_path = load_dir / "config.json"
        if config_path.exists():
            with open(config_path, "r") as f:
                config = ChatbotConfig.from_dict(json.load(f))
            logger.info("Loaded ChatbotConfig from config.json.")
        else:
            raise FileNotFoundError(f"Config file not found at {config_path}. Please ensure it exists.")
        
        # Initialize chatbot
        chatbot = cls(config, mode=mode)
        
        # Load Sentence Transformer
        model_path = load_dir / "sentence_transformer"
        if model_path.exists():
            # Load locally saved model
            chatbot.encoder = SentenceTransformer(str(model_path))
            logger.info("Loaded SentenceTransformer model from local path successfully.")
        else:
            # Load from pre-trained model hub
            chatbot.encoder = SentenceTransformer(config.pretrained_model)
            logger.info(f"Loaded SentenceTransformer model '{config.pretrained_model}' from the hub successfully.")
            
        return chatbot
    
    @classmethod
    def _prepare_model_for_inference(cls, chatbot: 'RetrievalChatbot', load_dir: Path) -> None:
        """Load inference components."""
        try:
            # Load FAISS index
            faiss_path = load_dir / 'faiss_indices/faiss_index_production.index'
            if faiss_path.exists():
                chatbot.index = faiss.read_index(str(faiss_path))
                logger.info("FAISS index loaded successfully")
            else:
                raise FileNotFoundError(f"FAISS index not found at {faiss_path}")
            
            # Load response pool
            response_pool_path = load_dir / 'faiss_indices/faiss_index_production_responses.json'
            if response_pool_path.exists():
                with open(response_pool_path, 'r') as f:
                    chatbot.response_pool = json.load(f)
                logger.info(f"Loaded {len(chatbot.response_pool)} responses")
            else:
                raise FileNotFoundError(f"Response pool not found at {response_pool_path}")
            
            # Verify dimensions match
            if chatbot.index.d != chatbot.config.embedding_dim:
                raise ValueError(
                    f"FAISS index dimension {chatbot.index.d} doesn't match "
                    f"model dimension {chatbot.config.embedding_dim}"
                )
                
        except Exception as e:
            logger.error(f"Error loading inference components: {e}")
            raise
            
    def save_models(self, save_dir: Union[str, Path]):
        """Save SentenceTransformer model and config."""
        save_dir = Path(save_dir)
        save_dir.mkdir(parents=True, exist_ok=True)
        
        # Save config
        with open(save_dir / "config.json", "w") as f:
            json.dump(self.config.to_dict(), f, indent=2)
            
        # Save Sentence Transformer
        self.encoder.save(save_dir / "sentence_transformer")
        logger.info(f"Model and config saved to {save_dir}.")
    
    def retrieve_responses(
        self,
        query: str,
        top_k: int = 10,
        reranker: Optional[CrossEncoderReranker] = None,
        summarizer: Optional[Summarizer] = None,
        summarize_threshold: int = 512,
        boost_factor: float = 1.15
    ) -> List[Tuple[str, float]]:
        """
        Retrieve top-k responses using FAISS and cross-encoder re-ranking.
        Args:
            query: The user's input text.
            top_k: Number of responses to return.
            reranker: Optional reranker for refined scoring.
            summarizer: Optional summarizer for long queries.
            summarize_threshold: Threshold to summarize long queries.
            boost_factor: Factor to boost scores for keyword matches.
        Returns:
            List of (response_text, final_score).
        """
        def sigmoid(x: float) -> float:
            return 1 / (1 + np.exp(-x))
        
        # Summarize long queries
        if summarizer and len(query.split()) > summarize_threshold:
            logger.info(f"Query is long ({len(query.split())} words). Summarizing...")
            query = summarizer.summarize_text(query)
            logger.info(f"Summarized query: {query}")
            
        # Detect domain for query
        detected_domain = self.detect_domain_from_query(query)
        #logger.info(f"Detected domain: {detected_domain}")
        
        # Retrieve candidates from FAISS
        #logger.info("Retrieving initial candidates from FAISS...")
        faiss_candidates = self.data_pipeline.retrieve_responses(query, top_k=top_k * 10)
        
        if not faiss_candidates:
            logger.warning("No candidates retrieved from FAISS.")
            return []
        
        # Filter out-of-domain responses
        if detected_domain != 'other':
            in_domain_candidates = [c for c in faiss_candidates if c[0]["domain"] == detected_domain]
            if in_domain_candidates:
                faiss_candidates = in_domain_candidates
            else:
                logger.info(f"No in-domain responses found for '{query}'. Using all candidates.")
        
        # Re-rank candidates using Cross-Encoder
        #logger.info("Re-ranking candidates using Cross-Encoder...")
        texts = [item[0]["text"] for item in faiss_candidates]  # Extract response texts
        faiss_scores = [item[1] for item in faiss_candidates]
        
        if reranker is None:
            reranker = CrossEncoderReranker(model_name=self.config.cross_encoder_model)
            
        ce_logits = reranker.rerank(query, texts, max_length=256)  # Re-rank responses
        
        # Combine FAISS and Cross-Encoder scores
        final_candidates = []
        for resp_text, faiss_score, logit in zip(texts, faiss_scores, ce_logits):
            ce_prob = sigmoid(logit)            # Cross-encoder score in range [0, 1]
            faiss_norm = (faiss_score + 1) / 2  # Normalize FAISS score to range [0, 1]
            combined_score = 0.75 * ce_prob + 0.25 * faiss_norm
            
            # Boost score based on keyword match
            query_keywords = self.extract_keywords(query)
            if query_keywords and any(kw in resp_text.lower() for kw in query_keywords):
                combined_score *= boost_factor
                
            # Adjust score based on length
            length_adjusted_score = self.length_adjust_score(resp_text, combined_score)
            
            final_candidates.append((resp_text, length_adjusted_score))
            
        # Sort and return top-k results
        final_candidates.sort(key=lambda x: x[1], reverse=True)
        #logger.info(f"Returning top-{top_k} re-ranked responses.")
        
        return final_candidates[:top_k]
    
    def extract_keywords(self, query: str) -> List[str]:
        """
        Return any domain keywords present in the query (lowercased).
        """
        domain_keywords = {
            'restaurant': ['restaurant', 'dining', 'food', 'dine', 'reservation', 'table', 'menu', 'cuisine', 'eat', 'place to eat', 'hungry', 'chef', 'dish', 'meal', 'brunch', 'bistro', 'buffet', 'catering', 'gourmet', 'fast food', 'fine dining', 'takeaway', 'delivery', 'restaurant booking'],
            'movie': ['movie', 'cinema', 'film', 'ticket', 'showtime', 'showing', 'theater', 'flick', 'screening', 'film ticket', 'film show', 'blockbuster', 'premiere', 'trailer', 'director', 'actor', 'actress', 'plot', 'genre', 'screen', 'sequel', 'animation', 'documentary'],
            'ride_share': ['ride', 'taxi', 'uber', 'lyft', 'car service', 'pickup', 'dropoff', 'driver', 'cab', 'hailing', 'rideshare', 'ride hailing', 'carpool', 'chauffeur', 'transit', 'transportation', 'hail ride'],
            'coffee': ['coffee', 'café', 'cafe', 'starbucks', 'espresso', 'latte', 'mocha', 'americano', 'barista', 'brew', 'cappuccino', 'macchiato', 'iced coffee', 'cold brew', 'espresso machine', 'coffee shop', 'tea', 'chai', 'java', 'bean', 'roast', 'decaf'],
            'pizza': ['pizza', 'delivery', 'order food', 'pepperoni', 'topping', 'pizzeria', 'slice', 'pie', 'margherita', 'deep dish', 'thin crust', 'cheese', 'oven', 'tossed', 'sauce', 'garlic bread', 'calzone'],
            'auto': ['car', 'vehicle', 'repair', 'maintenance', 'mechanic', 'oil change', 'garage', 'auto shop', 'tire', 'check engine', 'battery', 'transmission', 'brake', 'engine diagnostics', 'carwash', 'detail', 'alignment', 'exhaust', 'spark plug', 'dashboard'],
        }
        
        query_lower = query.lower()
        found = set()
        for domain, kw_list in domain_keywords.items():
            for kw in kw_list:
                if kw in query_lower:
                    found.add(kw)
        return list(found)
    
    def length_adjust_score(self, text: str, base_score: float) -> float:
        """
        Penalize very short lines, reward longer lines.
        """
        words = text.split()
        wcount = len(words)
        
        # Penalty if under 4 words
        if wcount < 4:
            return base_score * 0.8
        
        # Bonus for lines > 15 words
        if wcount > 15:
            bonus = min(0.03, 0.001 * (wcount - 15))
            base_score += bonus
        
        return base_score
    
    def detect_domain_from_query(self, query: str) -> str:
        """
        Detect the domain of the query based on keywords. Used for filtering FAISS search.
        """
        domain_patterns = {
            'restaurant': r'\b(restaurant|restaurants?|dining|food|foods?|dine|reservation|reservations?|table|tables?|menu|menus?|cuisine|cuisines?|eat|eats?|place\s?to\s?eat|places\s?to\s?eat|hungry|chef|chefs?|dish|dishes?|meal|meals?|fork|forks?|knife|knives?|spoon|spoons?|brunch|bistro|buffet|buffets?|catering|caterings?|gourmet|fast\s?food|fine\s?dining|takeaway|takeaways?|delivery|deliveries|restaurant\s?booking)\b',
            'movie': r'\b(movie|movies?|cinema|cinemas?|film|films?|ticket|tickets?|showtime|showtimes?|showing|showings?|theater|theaters?|flick|flicks?|screening|screenings?|film\s?ticket|film\s?tickets?|film\s?show|film\s?shows?|blockbuster|blockbusters?|premiere|premieres?|trailer|trailers?|director|directors?|actor|actors?|actress|actresses?|plot|plots?|genre|genres?|screen|screens?|sequel|sequels?|animation|animations?|documentary|documentaries)\b',
            'ride_share': r'\b(ride|rides?|taxi|taxis?|uber|lyft|car\s?service|car\s?services?|pickup|pickups?|dropoff|dropoffs?|driver|drivers?|cab|cabs?|hailing|hailings?|rideshare|rideshares?|ride\s?hailing|ride\s?hailings?|carpool|carpools?|chauffeur|chauffeurs?|transit|transits?|transportation|transportations?|hail\s?ride|hail\s?rides?)\b',
            'coffee': r'\b(coffee|coffees?|café|cafés?|cafe|cafes?|starbucks|espresso|espressos?|latte|lattes?|mocha|mochas?|americano|americanos?|barista|baristas?|brew|brews?|cappuccino|cappuccinos?|macchiato|macchiatos?|iced\s?coffee|iced\s?coffees?|cold\s?brew|cold\s?brews?|espresso\s?machine|espresso\s?machines?|coffee\s?shop|coffee\s?shops?|tea|teas?|chai|chais?|java|javas?|bean|beans?|roast|roasts?|decaf)\b',
            'pizza': r'\b(pizza|pizzas?|delivery|deliveries|order\s?food|order\s?foods?|pepperoni|pepperonis?|topping|toppings?|pizzeria|pizzerias?|slice|slices?|pie|pies?|margherita|margheritas?|deep\s?dish|deep\s?dishes?|thin\s?crust|thin\s?crusts?|cheese|cheeses?|oven|ovens?|tossed|tosses?|sauce|sauces?|garlic\s?bread|garlic\s?breads?|calzone|calzones?)\b',
            'auto': r'\b(car|cars?|vehicle|vehicles?|repair|repairs?|maintenance|maintenances?|mechanic|mechanics?|oil\s?change|oil\s?changes?|garage|garages?|auto\s?shop|auto\s?shops?|tire|tires?|check\s?engine|check\s?engines?|battery|batteries?|transmission|transmissions?|brake|brakes?|engine\s?diagnostics|engine\s?diagnostic|carwash|carwashes?|detail|details?|alignment|alignments?|exhaust|exhausts?|spark\s?plug|spark\s?plugs?|dashboard|dashboards?)\b',
        }

        # Check for matches
        for domain, pattern in domain_patterns.items():
            if re.search(pattern, query.lower()):
                return domain

        return 'other'
    
    def is_numeric_response(self, text: str) -> bool:
        """
        Return True if `text` is purely digits and/or spaces.
        """
        pattern = r'^[\s]*[\d]+([\s.,\d]+)*[\s]*$'
        return bool(re.match(pattern, text.strip()))
    
    def introduction_message(self) -> None:
        """Print an introduction message to introduce the chatbot."""
        print(
            "\nAssistant: Hello! I'm a simple chatbot assistant. I've been trained to answer "
            "basic questions about topics including restaurants, movies, ride sharing, coffee, and pizza. "
            "Please ask me a question and I'll do my best to assist you."
        )
    
    def run_interactive_chat(self, quality_checker, show_alternatives=False):
        """Separate function for interactive chat loop."""
        
        # Chatbot introduction
        self.introduction_message()
        
        # Chat loop
        while True:
            try:
                user_input = input("\nYou: ")
            except (KeyboardInterrupt, EOFError):
                print("\nAssistant: Goodbye!")
                break
            
            if user_input.lower() in ["quit", "exit", "bye"]:
                print("\nAssistant: Goodbye!")
                break
            
            response, candidates, metrics, top_response_score = self.chat(
                query=user_input,
                conversation_history=None,
                quality_checker=quality_checker,
                top_k=10
            )
            
            print(f"\nAssistant: {response}")
            
            if show_alternatives and candidates and metrics.get("is_confident", False):
                print("\n   Alternative responses:")
                for resp, score in candidates[1:4]:
                    print(f"   Score: {score:.4f} - {resp}")
            elif top_response_score < 0.7:
                print("\n[Low Confidence]: Consider rephrasing your query for better assistance.")
    
    def chat(
        self,
        query: str,
        conversation_history: Optional[List[Tuple[str, str]]] = None,
        quality_checker: Optional['ResponseQualityChecker'] = None,
        top_k: int = 10,
    ) -> Tuple[str, List[Tuple[str, float]], Dict[str, Any]]:
        """
        Live chat with the chatbot. Uses same processing flow as validation, except for context handling and quality checking.
        """
        @self.run_on_device
        def get_response(self_arg, query_arg):
            # Build conversation context string
            conversation_str = self_arg._build_conversation_context(query_arg, conversation_history)
            
            # Retrieve and re-rank
            responses = self_arg.retrieve_responses(
                query=conversation_str,
                top_k=top_k,
                reranker=self_arg.reranker,
                summarizer=self_arg.summarizer,
                summarize_threshold=512
            )
            
            # Handle low confidence or empty responses
            if not responses:
                return ("I'm sorry, but I couldn't find a relevant response.", [], {})
            
            # Analyze is_confident and computed score when returning the top response
            metrics = quality_checker.check_response_quality(query_arg, responses)
            is_confident = metrics.get('is_confident', False)
            top_response_score = responses[0][1]
            
            # if uncertain, ask for clarification
            if not is_confident or top_response_score < 0.5:
                return ("I need more information to provide a good answer. Could you please clarify?", responses, metrics, top_response_score)
            
            # Return the top response
            return responses[0][0], responses, metrics, top_response_score
        
        return get_response(self, query)

    def _build_conversation_context(
        self, 
        query: str, 
        conversation_history: Optional[List[Tuple[str, str]]]
    ) -> str:
        """
        Build conversation context string from conversation history,
        using literal <USER> and <ASSISTANT> tokens (no tokenizer special index).
        """
        USER_TOKEN = "<USER>"
        ASSISTANT_TOKEN = "<ASSISTANT>"

        if not conversation_history:
            return f"{USER_TOKEN} {query}"
        
        conversation_parts = []
        for user_txt, assistant_txt in conversation_history:
            # Insert literal tokens
            conversation_parts.append(f"{USER_TOKEN} {user_txt}")
            conversation_parts.append(f"{ASSISTANT_TOKEN} {assistant_txt}")
        
        conversation_parts.append(f"{USER_TOKEN} {query}")
        return "\n".join(conversation_parts)
    
    def train_model(
        self,
        tfrecord_file_path: str,
        epochs: int = 20,
        batch_size: int = 16,
        validation_split: float = 0.2,
        checkpoint_dir: str = "checkpoints/",
        use_lr_schedule: bool = True,
        peak_lr: float = 1e-5,
        warmup_steps_ratio: float = 0.1,
        early_stopping_patience: int = 3,
        min_delta: float = 1e-4,
        test_mode: bool = False,
        initial_epoch: int = 0
    ) -> None:
        """
        Train the retrieval model using a pre-prepared TFRecord dataset.
        - Checkpoint loading/restoring
        - LR scheduling
        - Epoch/iteration tracking
        - Training-history logging
        - Early stopping
        - Custom loss function (Contrastive loss with hard negative sampling))
        """
        logger.info("Starting training with pre-prepared TFRecord dataset...")

        def parse_tfrecord_fn(example_proto, max_length, neg_samples):
            """
            Parses a single TFRecord example.
            """
            feature_description = {
                'query_ids': tf.io.FixedLenFeature([max_length], tf.int64),
                'positive_ids': tf.io.FixedLenFeature([max_length], tf.int64),
                'negative_ids': tf.io.FixedLenFeature([neg_samples * max_length], tf.int64),
            }
            parsed_features = tf.io.parse_single_example(example_proto, feature_description)

            query_ids = tf.cast(parsed_features['query_ids'], tf.int32)
            positive_ids = tf.cast(parsed_features['positive_ids'], tf.int32)
            negative_ids = tf.cast(parsed_features['negative_ids'], tf.int32)
            negative_ids = tf.reshape(negative_ids, [neg_samples, max_length])

            return query_ids, positive_ids, negative_ids

        # Count total records in TFRecord
        raw_dataset = tf.data.TFRecordDataset(tfrecord_file_path)
        total_pairs = sum(1 for _ in raw_dataset)
        logger.info(f"Total pairs in TFRecord: {total_pairs}")

        train_size = int(total_pairs * (1 - validation_split))
        val_size = total_pairs - train_size
        steps_per_epoch = math.ceil(train_size / batch_size)
        val_steps = math.ceil(val_size / batch_size)
        total_steps = steps_per_epoch * epochs
        buffer_size = max(1, total_pairs // 2)  # 50% of the dataset for shuffling

        logger.info(f"Training pairs: {train_size}")
        logger.info(f"Validation pairs: {val_size}")
        logger.info(f"Steps per epoch: {steps_per_epoch}")
        logger.info(f"Validation steps: {val_steps}")
        logger.info(f"Total steps: {total_steps}")

        # Set up optimizer & LR schedule
        if use_lr_schedule:
            warmup_steps = int(total_steps * warmup_steps_ratio)
            lr_schedule = self._get_lr_schedule(
                total_steps=total_steps,
                peak_lr=tf.cast(peak_lr, tf.float32),
                warmup_steps=warmup_steps
            )
            self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
            logger.info("Using custom learning rate schedule.")
        else:
            self.optimizer = tf.keras.optimizers.Adam(learning_rate=tf.cast(peak_lr, tf.float32))
            logger.info("Using fixed learning rate.")

        # Dummy step to force initialization
        dummy_input = tf.zeros((1, self.config.max_context_length), dtype=tf.int32)
        with tf.GradientTape() as tape:
            dummy_output = self.encoder(dummy_input)
            dummy_loss = tf.cast(tf.reduce_mean(dummy_output), tf.float32)
        dummy_grads = tape.gradient(dummy_loss, self.encoder.trainable_variables)
        self.optimizer.apply_gradients(zip(dummy_grads, self.encoder.trainable_variables))

        # Create checkpoint and manager
        checkpoint = tf.train.Checkpoint(
            epoch=tf.Variable(0, dtype=tf.int32),
            optimizer=self.optimizer,
            model=self.encoder
        )

        # Create a CheckpointManager
        manager = tf.train.CheckpointManager(
            checkpoint,
            directory=checkpoint_dir,
            max_to_keep=3,
            checkpoint_name='ckpt'
        )

        # Restore from existing checkpoint if one is provided
        latest_checkpoint = manager.latest_checkpoint
        history_path = Path(checkpoint_dir) / 'training_history.json'

        # Log epoch losses across runs, including restore from checkpoint
        if not hasattr(self, 'history'):
            self.history = {'train_loss': [], 'val_loss': [], 'learning_rate': []}

        if latest_checkpoint and not test_mode:
            # Debug checkpoint loading
            # logger.info(f"\nTrying to load checkpoint from: {latest_checkpoint}")
            # reader = tf.train.load_checkpoint(latest_checkpoint)
            # shape_from_key = reader.get_variable_to_shape_map()
            # dtype_from_key = reader.get_variable_to_dtype_map()
            # logger.info("\nCheckpoint Variables:")
            # for key in shape_from_key:
            #     logger.info(f"{key}: dtype={dtype_from_key[key]} - Shape: {shape_from_key[key]}")
                
            status = checkpoint.restore(latest_checkpoint)
            status.assert_consumed()
            logger.info(f"Restored from checkpoint: {latest_checkpoint}")
            logger.info(f"Optimizer iterations after restore: {self.optimizer.iterations.numpy()}")
            
            # Verify learning rate after restore
            if use_lr_schedule:
                current_lr = float(lr_schedule(self.optimizer.iterations))
            else:
                current_lr = float(self.optimizer.learning_rate.numpy())
            logger.info(f"Current learning rate after restore: {current_lr:.2e}")

            # Derive initial_epoch from checkpoint name if not passed in
            ckpt_number = int(latest_checkpoint.split('ckpt-')[-1])
            if initial_epoch == 0:
                initial_epoch = ckpt_number

            # Assign to checkpoint.epoch for counting
            checkpoint.epoch.assign(tf.cast(initial_epoch, tf.int32))
            logger.info(f"Resuming from epoch {initial_epoch}")
            
            # Load history from file:
            if history_path.exists():
                try:
                    with open(history_path, 'r') as f:
                        self.history = json.load(f)
                    logger.info(f"Loaded previous training history from {history_path}")
                except Exception as e:
                    logger.warning(f"Could not load history, starting fresh: {e}")
            
            # Save custom weights not being saved in the full model.
            # This was a bugfix to extract weights from a checkpoint without retraining.
            # Before updating save_models, only Distilbert weights were being saved (custom layers were missed).
            # Not needed, also not harmful.
            self.save_models(Path(checkpoint_dir) / "pretrained_full_model")
            logger.info(f"Manually saved custom weights after restore.")
        else:
            logger.info("Starting training from scratch")
            checkpoint.epoch.assign(tf.cast(0, tf.int32))
            initial_epoch = 0

        # Set up TensorBoard
        log_dir = Path(checkpoint_dir) / "tensorboard_logs"
        log_dir.mkdir(parents=True, exist_ok=True)
        current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
        train_log_dir = str(log_dir / f"train_{current_time}")
        val_log_dir = str(log_dir / f"val_{current_time}")
        train_summary_writer = tf.summary.create_file_writer(train_log_dir)
        val_summary_writer = tf.summary.create_file_writer(val_log_dir)
        logger.info(f"TensorBoard logs will be saved in {log_dir}")
        
        # Parse dataset
        dataset = tf.data.TFRecordDataset(tfrecord_file_path)
        
        # Debug mode uses small subset. Useful for CPU debugging.
        if test_mode:
            subset_size = 200
            dataset = dataset.take(subset_size)
            logger.info(f"TEST MODE: Using only {subset_size} examples")
            # Recompute sizes, steps, epochs, etc., as needed
            total_pairs = subset_size
            train_size = int(total_pairs * (1 - validation_split))
            val_size = total_pairs - train_size
            batch_size = min(batch_size, val_size)
            steps_per_epoch = math.ceil(train_size / batch_size)
            val_steps = math.ceil(val_size / batch_size)
            total_steps = steps_per_epoch * epochs
            buffer_size = max(1, total_pairs // 10)
            epochs = min(epochs, 5)  # For quick debug
            early_stopping_patience = 2
            logger.info(f"New training pairs: {train_size}")
            logger.info(f"New validation pairs: {val_size}")
            
        dataset = dataset.map(
            lambda x: parse_tfrecord_fn(x, self.config.max_context_length, self.data_pipeline.neg_samples),
            num_parallel_calls=tf.data.AUTOTUNE
        )
        
        # Train/val split
        train_dataset = dataset.take(train_size)
        val_dataset = dataset.skip(train_size).take(val_size)
        
        # Shuffle and batch
        train_dataset = train_dataset.shuffle(buffer_size=buffer_size)
        train_dataset = train_dataset.batch(batch_size, drop_remainder=True)
        train_dataset = train_dataset.prefetch(tf.data.AUTOTUNE)
        
        val_dataset = val_dataset.batch(batch_size, drop_remainder=False)
        val_dataset = val_dataset.prefetch(tf.data.AUTOTUNE)
        val_dataset = val_dataset.cache()
        
        # Training loop
        best_val_loss = float("inf")
        epochs_no_improve = 0
        
        for epoch in range(int(checkpoint.epoch.numpy()) + 1, epochs + 1):
            checkpoint.epoch.assign(epoch)
            logger.info(f"Starting Epoch {epoch}...")
            
            epoch_loss_avg = tf.keras.metrics.Mean(dtype=tf.float32)
            batches_processed = 0
            
            try:
                train_pbar = tqdm(
                    total=steps_per_epoch,
                    desc=f"Training Epoch {epoch}",
                    unit="batch"
                )
                is_tqdm_train = True
            except ImportError:
                train_pbar = None
                is_tqdm_train = False
                
            # --- Training ---
            for q_batch, p_batch, n_batch in train_dataset:
                loss, grad_norm, post_clip_norm = self.train_step(q_batch, p_batch, n_batch)
                epoch_loss_avg(loss)
                batches_processed += 1

                # Log to TensorBoard
                with train_summary_writer.as_default():
                    step = (epoch - 1) * steps_per_epoch + batches_processed
                    tf.summary.scalar("loss", tf.cast(loss, tf.float32), step=step)
                    tf.summary.scalar("gradient_norm_pre_clip", tf.cast(grad_norm, tf.float32), step=step)
                    tf.summary.scalar("gradient_norm_post_clip", tf.cast(post_clip_norm, tf.float32), step=step)

                # Update progress bar
                if use_lr_schedule:
                    current_lr = float(lr_schedule(self.optimizer.iterations))
                else:
                    current_lr = float(self.optimizer.learning_rate.numpy())

                if is_tqdm_train:
                    train_pbar.update(1)
                    train_pbar.set_postfix({
                        "loss": f"{loss.numpy():.4f}",
                        "pre_clip": f"{grad_norm.numpy():.2e}",
                        "post_clip": f"{post_clip_norm.numpy():.2e}",
                        "lr": f"{current_lr:.2e}",
                        "batches": f"{batches_processed}/{steps_per_epoch}"
                    })
                
                gc.collect()
                
                # End the epoch early if we've processed all steps
                if batches_processed >= steps_per_epoch:
                    break
            
            if is_tqdm_train and train_pbar:
                train_pbar.close()
            
            # --- Validation ---
            val_loss_avg = tf.keras.metrics.Mean(dtype=tf.float32)
            val_batches_processed = 0
            
            try:
                val_pbar = tqdm(total=val_steps, desc="Validation", unit="batch")
                is_tqdm_val = True
            except ImportError:
                val_pbar = None
                is_tqdm_val = False
            
            last_valid_val_loss = None
            valid_batches = False
            
            for q_batch, p_batch, n_batch in val_dataset:
                # If batch is too small, skip
                if tf.shape(q_batch)[0] < 2:
                    logger.warning(f"Skipping validation batch of size {tf.shape(q_batch)[0]}")
                    continue
                
                valid_batches = True
                val_loss = self.validation_step(q_batch, p_batch, n_batch)
                val_loss_avg(val_loss)
                last_valid_val_loss = val_loss
                val_batches_processed += 1
                
                if is_tqdm_val:
                    val_pbar.update(1)
                    val_pbar.set_postfix({
                        "val_loss": f"{val_loss.numpy():.4f}",
                        "batches": f"{val_batches_processed}/{val_steps}"
                    })
                    
                gc.collect()
                
                if val_batches_processed >= val_steps:
                    break
            
            if not valid_batches:
                # If no valid batch is found, fallback
                logger.warning("No valid validation batches in this epoch")
                if last_valid_val_loss is not None:
                    val_loss = last_valid_val_loss
                    val_loss_avg(val_loss)
                else:
                    val_loss = epoch_loss_avg.result()
                    val_loss_avg(val_loss)
            
            if is_tqdm_val and val_pbar:
                val_pbar.close()
            
            # End of epoch: final stats
            train_loss = epoch_loss_avg.result().numpy()
            val_loss = val_loss_avg.result().numpy()
            logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
            
            # TensorBoard epoch logs
            with train_summary_writer.as_default():
                tf.summary.scalar("epoch_loss", train_loss, step=epoch)
            with val_summary_writer.as_default():
                tf.summary.scalar("val_loss", val_loss, step=epoch)
                
            # Save checkpoint
            manager.save()
            
            # Save model for iterative testing/inference
            model_save_path = Path(checkpoint_dir) / f"model_epoch_{epoch}"
            self.save_models(model_save_path)
            logger.info(f"Saved model for epoch {epoch} at {model_save_path}")
            
            # Update local history
            self.history['train_loss'].append(train_loss)
            self.history['val_loss'].append(val_loss)
            self.history.setdefault('learning_rate', []).append(current_lr)
            
            def convert_to_py_floats(obj):
                if isinstance(obj, dict):
                    return {k: convert_to_py_floats(v) for k, v in obj.items()}
                elif isinstance(obj, list):
                    return [convert_to_py_floats(x) for x in obj]
                elif isinstance(obj, (np.float32, np.float64)):
                    return float(obj)
                elif tf.is_tensor(obj):
                    return float(obj.numpy())
                else:
                    return obj
                
            json_history = convert_to_py_floats(self.history)
            
            # Save training history to file every epoch
            with open(history_path, 'w') as f:
                json.dump(json_history, f)
            logger.info(f"Saved training history to {history_path}")
            
            # Early stopping
            if val_loss < best_val_loss - min_delta:
                best_val_loss = val_loss
                epochs_no_improve = 0
                logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
            else:
                epochs_no_improve += 1
                logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
                if epochs_no_improve >= early_stopping_patience:
                    logger.info("Early stopping triggered.")
                    break
                
        logger.info("Training completed!")
        
    @tf.function
    def train_step(
        self, 
        q_batch: tf.Tensor, 
        p_batch: tf.Tensor, 
        n_batch: tf.Tensor
    ) -> tf.Tensor:
        """
        Single training step using queries, positives, and hard negatives.
        """
        with tf.GradientTape() as tape:
            # Encode queries, positives, and negatives
            q_enc = self.encoder(q_batch, training=True)  # [batch_size, embed_dim]
            p_enc = self.encoder(p_batch, training=True)  # [batch_size, embed_dim]
            shape = tf.shape(n_batch)
            bs = shape[0]
            neg_samples = shape[1]

            # Flatten negatives to feed them in one pass: [batch_size * neg_samples, max_length]
            n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
            n_enc_flat = self.encoder(n_batch_flat, training=True)  # [bs*neg_samples, embed_dim]

            # Reshape back => [batch_size, neg_samples, embed_dim]
            n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])

            # Combine the positive embedding and negative embeddings along dim=1: shape [batch_size, 1 + neg_samples, embed_dim]
            # Col 1 is the pos, subsequent cols are negatives
            combined_p_n = tf.concat([tf.expand_dims(p_enc, axis=1), n_enc], axis=1)  # [bs, (1+neg_samples), embed_dim]

            # Compute scores: dot product of q_enc with each column in combined_p_n. `tf.einsum` handles the batch dimension
            dot_products = tf.cast(tf.einsum('bd,bkd->bk', q_enc, combined_p_n), tf.float32)
            labels = tf.zeros([bs], dtype=tf.int32)  # Keep labels as int32
            loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
                labels=labels,
                logits=dot_products
            )
            loss = tf.cast(tf.reduce_mean(loss), tf.float32)

        # Calculate gradients and clip
        gradients = tape.gradient(loss, self.encoder.trainable_variables)
        gradients_norm = tf.cast(tf.linalg.global_norm(gradients), tf.float32)
        max_grad_norm = tf.constant(1.5, dtype=tf.float32)
        gradients, _ = tf.clip_by_global_norm(gradients, max_grad_norm, gradients_norm)
        post_clip_norm = tf.cast(tf.linalg.global_norm(gradients), tf.float32)
        
        self.optimizer.apply_gradients(zip(gradients, self.encoder.trainable_variables))
        
        return loss, gradients_norm, post_clip_norm

    @tf.function
    def validation_step(
        self, 
        q_batch: tf.Tensor, 
        p_batch: tf.Tensor, 
        n_batch: tf.Tensor
    ) -> tf.Tensor:
        """
        Single validation step using queries, positives, and hard negatives.
        Same idea as train_step, but without gradient updates.
        """
        q_enc = self.encoder(q_batch, training=False)
        p_enc = self.encoder(p_batch, training=False)

        shape = tf.shape(n_batch)
        bs = shape[0]
        neg_samples = shape[1]

        n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
        n_enc_flat = self.encoder(n_batch_flat, training=False)
        n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])

        combined_p_n = tf.concat(
            [tf.expand_dims(p_enc, axis=1), n_enc],
            axis=1
        )

        dot_products = tf.cast(tf.einsum('bd,bkd->bk', q_enc, combined_p_n), tf.float32)
        labels = tf.zeros([bs], dtype=tf.int32)
        
        loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=labels,
            logits=dot_products
        )
        loss = tf.cast(tf.reduce_mean(loss), tf.float32)

        return loss
    
    def _get_lr_schedule(
        self,
        total_steps: int,
        peak_lr: float,
        warmup_steps: int
    ) -> tf.keras.optimizers.schedules.LearningRateSchedule:
        """
        Custom learning rate schedule with warmup and cosine decay.
        """
        class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
            def __init__(
                self,
                total_steps: int,
                peak_lr: float,
                warmup_steps: int
            ):
                super().__init__()
                self.total_steps = tf.cast(total_steps, tf.float32)
                self.peak_lr = tf.cast(peak_lr, tf.float32)
                
                # warmup_steps 10% of total_steps
                adjusted_warmup_steps = min(warmup_steps, max(1, total_steps // 10))
                self.warmup_steps = tf.cast(adjusted_warmup_steps, tf.float32)
                
                # Calculate constants
                self.initial_lr = tf.cast(self.peak_lr * 0.1, tf.float32)
                self.min_lr = tf.cast(self.peak_lr * 0.01, tf.float32)
                
                logger.info(f"Learning rate schedule initialized:")
                logger.info(f"  Initial LR: {float(self.initial_lr):.6f}")
                logger.info(f"  Peak LR: {float(self.peak_lr):.6f}")
                logger.info(f"  Min LR: {float(self.min_lr):.6f}")
                logger.info(f"  Warmup steps: {int(self.warmup_steps)}")
                logger.info(f"  Total steps: {int(self.total_steps)}")
            
            def __call__(self, step):
                step = tf.cast(step, tf.float32)
                
                # Warmup
                warmup_factor = tf.cast(tf.minimum(1.0, step / self.warmup_steps), tf.float32)
                warmup_lr = self.initial_lr + (self.peak_lr - self.initial_lr) * warmup_factor
                
                # Decay
                decay_steps = tf.cast(tf.maximum(1.0, self.total_steps - self.warmup_steps), tf.float32)
                decay_factor = tf.cast((step - self.warmup_steps) / decay_steps, tf.float32)
                decay_factor = tf.cast(tf.minimum(tf.maximum(0.0, decay_factor), 1.0), tf.float32)
                cosine_decay = tf.cast(0.5 * (1.0 + tf.cos(tf.constant(math.pi, dtype=tf.float32) * decay_factor)), tf.float32)
                decay_lr = self.min_lr + (self.peak_lr - self.min_lr) * cosine_decay
                
                final_lr = tf.where(step < self.warmup_steps, warmup_lr, decay_lr)
                
                # Ensure valid lr
                final_lr = tf.maximum(self.min_lr, final_lr)
                final_lr = tf.where(tf.math.is_finite(final_lr), final_lr, self.min_lr)
                
                return final_lr
            
            def get_config(self):
                return {
                    "total_steps": self.total_steps,
                    "peak_lr": self.peak_lr,
                    "warmup_steps": self.warmup_steps,
                }
        
        return CustomSchedule(total_steps, peak_lr, warmup_steps)