File size: 5,487 Bytes
7ccb6a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
def generate_json(form_state):
dataModel = {
"name": None,
"description": None,
"organizations": [],
"targetCommunities": [],
"bodies": [],
"governance": [],
"socialContexts":[],
"adaptations":[],
"participants":[],
"teams":[]
}
targetCommunities = {
"id": None,
"startingAgeRange": None,
"endingAgeRange": None,
"ethnicities": [],
"genders": [],
"spokenLanguages": [
{"language": None, "proficiency": None}
],
"socioEconomicStati": [],
"skillLevels": [],
"averageTenure": None
}
bodies = {
}
dataModel = {
"name": None,
"description": None,
"organizations": [],
"targetCommunities": [
{
"id": None,
"startingAgeRange": None,
"endingAgeRange": None,
"ethnicities": [],
"genders": [],
"spokenLanguages": [
{"language": None, "proficiency": None}
],
"socioEconomicStati": [],
"skillLevels": [],
"averageTenure": None
},
{
"id": None,
"startingAgeRange": None,
"endingAgeRange": None,
"ethnicities": [],
"genders": [],
"spokenLanguages": [
{"language": None, "proficiency": None}
],
"socioEconomicStati": [],
"skillLevels": [],
"averageTenure": None
}
],
"bodies": [
{
"id": None,
"description": None,
"type": None
},
{
"id": None,
"description": None,
"type": None
}
],
"governances": [
{
"id": None,
"projectType": None
}
],
"socialContexts": [],
"useCases": [],
"adaptations": [
{
"id": None,
"description": None,
"useCases": [],
"targetCommunities": [],
"relatedTeams": []
},
{
"id": None,
"description": None,
"useCases": [],
"targetCommunities": [],
"relatedTeams": []
}
],
"participants": [
{
"id": None,
"age": None,
"location": None,
"workplaceType": None,
"ethnicity": None,
"gender": None,
"disabilities": [],
"sexualOrientation": None,
"religion": None,
"country": None,
"spokenLanguages": [
{"language": None, "proficiency": None}
],
"socioEconomicStatus": None,
"skillLevel": None,
"tenure": None
}
],
"teams": [
{
"id": None,
"type": None,
"description": None,
"startingAgeRange": None,
"endingAgeRange": None,
"locations": [],
"workplaceType": None,
"ethnicities": [],
"genders": [],
"disabilities": [],
"sexualOrientations": [],
"religiousBeliefs": [],
"countries": [],
"educationalLevels": [],
"spokenLanguages": [
{"language": None, "proficiency": None}
],
"socioEconomicStati": [],
"skillLevels": [],
"averageTenure": None,
"startDate": None,
"endDate": None,
"teamSize": None,
"iterations": None,
"participants": []
},
{
"id": None,
"type": None,
"description": None,
"startingAgeRange": None,
"endingAgeRange": None,
"locations": [],
"workplaceType": None,
"ethnicities": [],
"genders": [],
"disabilities": [],
"sexualOrientations": [],
}
]
}
return dataModel
def unflatten(flat_dict):
nested = {}
for flat_key, value in flat_dict.items():
keys = flat_key.split('_')
current = nested
for i, key in enumerate(keys):
# For intermediate keys, ensure the container is a dict.
if i < len(keys) - 1:
if key in current:
# If current[key] exists but isn't a dict, replace it.
if not isinstance(current[key], dict):
current[key] = {}
else:
current[key] = {}
current = current[key]
else:
# Last key: assign the value.
current[key] = value
return nested
|