Spaces:
Sleeping
Sleeping
File size: 2,200 Bytes
0d02199 74defa2 bae50d8 74defa2 0d02199 ef974d4 bae50d8 0d02199 ef974d4 bae50d8 0d02199 d98f006 36ff355 d98f006 0d02199 49696e1 0d02199 d98f006 0d02199 1a99d03 86968fe 0d02199 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
from PIL import Image
import gradio as gr
import torch, os, random
from accelerate import Accelerator
from transformers import pipeline
from diffusers.utils import load_image
from diffusers import DiffusionPipeline, DDPMScheduler
from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
accelerator = Accelerator(cpu=True)
warp_prior = accelerator.prepare(WuerstchenPriorPipeline.from_pretrained("warp-ai/wuerstchen-prior", torch_dtype=torch.float32, use_safetensors=True, safety_cheker=None))
###warp_prior.scheduler = DDPMWuerstchenScheduler.from_config(warp_prior.scheduler.config)
warp_prior = warp_prior.to("cpu")
warp = accelerator.prepare(WuerstchenDecoderPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=torch.float32, use_safetensors=True, safety_checker=None))
###warp.scheduler = DDPMWuerstchenScheduler.from_config(warp.scheduler.config)
warp = warp.to("cpu")
generator = torch.Generator(device="cpu").manual_seed(random.randint(1, 4876364))
apol=[]
def plex(cook, one, two):
apol=[]
###goof = load_image(img).resize((512, 512))
negative_prompt = "lowres,text,bad quality,low quality,jpeg artifacts,ugly,bad hands,bad face,blurry,bad eyes,watermark,signature"
warp_out = warp_prior(prompt=cook, height=512,width=512,negative_prompt=negative_prompt,guidance_scale=two,timestep=DEFAULT_STAGE_C_TIMESTEPS,num_inference_steps=one)
primpt = ""
imas = warp(image_embeddings=warp_out.image_embeddings, height=512, width=512, num_inference_steps=one, timestep=DEFAULT_STAGE_C_TIMESTEPS,prompt=cook,negative_prompt=primpt,guidance_scale=0.0,output_type="pil")
for i, igs in enumerate(imas["images"]):
apol.append(igs)
return apol
iface = gr.Interface(fn=plex,inputs=[gr.Textbox(label="prompt"), gr.Slider(label="Inference steps",minimum=1,step=1,maximum=10,value=5), gr.Slider(label="Prior guidance scale",minimum=4.1,step=0.1,maximum=19.9,value=4.1)],outputs=gr.Gallery(label="Generated Output Image",columns=2), title="Txt2Img Wrstchn SD", description="Very slow! Running on cpu. By JoPmt.")
iface.queue(max_size=1,api_open=False)
iface.launch(max_threads=1) |