File size: 4,839 Bytes
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from .refine import *


def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
    return nn.Sequential(
        torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
        nn.PReLU(out_planes),
    )


def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(
            in_planes,
            out_planes,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=True,
        ),
        nn.PReLU(out_planes),
    )


class IFBlock(nn.Module):
    def __init__(self, in_planes, c=64):
        super(IFBlock, self).__init__()
        self.conv0 = nn.Sequential(
            conv(in_planes, c // 2, 3, 2, 1),
            conv(c // 2, c, 3, 2, 1),
        )
        self.convblock = nn.Sequential(
            conv(c, c),
            conv(c, c),
            conv(c, c),
            conv(c, c),
            conv(c, c),
            conv(c, c),
            conv(c, c),
            conv(c, c),
        )
        self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)

    def forward(self, x, flow, scale):
        if scale != 1:
            x = F.interpolate(x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False)
        if flow != None:
            flow = F.interpolate(flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False) * 1.0 / scale
            x = torch.cat((x, flow), 1)
        x = self.conv0(x)
        x = self.convblock(x) + x
        tmp = self.lastconv(x)
        tmp = F.interpolate(tmp, scale_factor=scale * 2, mode="bilinear", align_corners=False)
        flow = tmp[:, :4] * scale * 2
        mask = tmp[:, 4:5]
        return flow, mask


class IFNet_m(nn.Module):
    def __init__(self):
        super(IFNet_m, self).__init__()
        self.block0 = IFBlock(6 + 1, c=240)
        self.block1 = IFBlock(13 + 4 + 1, c=150)
        self.block2 = IFBlock(13 + 4 + 1, c=90)
        self.block_tea = IFBlock(16 + 4 + 1, c=90)
        self.contextnet = Contextnet()
        self.unet = Unet()

    def forward(self, x, scale=[4, 2, 1], timestep=0.5, returnflow=False):
        timestep = (x[:, :1].clone() * 0 + 1) * timestep
        img0 = x[:, :3]
        img1 = x[:, 3:6]
        gt = x[:, 6:]  # In inference time, gt is None
        flow_list = []
        merged = []
        mask_list = []
        warped_img0 = img0
        warped_img1 = img1
        flow = None
        loss_distill = 0
        stu = [self.block0, self.block1, self.block2]
        for i in range(3):
            if flow != None:
                flow_d, mask_d = stu[i](
                    torch.cat((img0, img1, timestep, warped_img0, warped_img1, mask), 1), flow, scale=scale[i]
                )
                flow = flow + flow_d
                mask = mask + mask_d
            else:
                flow, mask = stu[i](torch.cat((img0, img1, timestep), 1), None, scale=scale[i])
            mask_list.append(torch.sigmoid(mask))
            flow_list.append(flow)
            warped_img0 = warp(img0, flow[:, :2])
            warped_img1 = warp(img1, flow[:, 2:4])
            merged_student = (warped_img0, warped_img1)
            merged.append(merged_student)
        if gt.shape[1] == 3:
            flow_d, mask_d = self.block_tea(
                torch.cat((img0, img1, timestep, warped_img0, warped_img1, mask, gt), 1), flow, scale=1
            )
            flow_teacher = flow + flow_d
            warped_img0_teacher = warp(img0, flow_teacher[:, :2])
            warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
            mask_teacher = torch.sigmoid(mask + mask_d)
            merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
        else:
            flow_teacher = None
            merged_teacher = None
        for i in range(3):
            merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
            if gt.shape[1] == 3:
                loss_mask = (
                    ((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01)
                    .float()
                    .detach()
                )
                loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
        if returnflow:
            return flow
        else:
            c0 = self.contextnet(img0, flow[:, :2])
            c1 = self.contextnet(img1, flow[:, 2:4])
            tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
            res = tmp[:, :3] * 2 - 1
            merged[2] = torch.clamp(merged[2] + res, 0, 1)
        return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill