Spaces:
Running
Running
File size: 3,721 Bytes
7ab64d3 8b71023 7ab64d3 8b71023 7ab64d3 8b71023 7ab64d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import gradio as gr
from huggingface_hub import HfApi
import duckdb
from datasets import load_dataset
import pandas as pd
import os, time, sys, json, random
custom_css="""
* { animation: gow 3s 1 forwards; } @keyframes gow { from { transform: scale(0.1); } to { transform: scale(1.0); } }
"""
head_js="""
<script>var mouse = {x: undefined,y: undefined};var newX;var newY;window.addEventListener('mousemove',function (event) {mouse.x = event.x;mouse.y = event.y;});window.addEventListener('touchstart', function (event) {let touchtart = event.touches[0];event.preventDefault();mouse.x = touchtart.clientX;mouse.y = touchtart.clientY;newX = mouse.x;newY = mouse.y;var colr = 'hsla('+Math.floor(Math.random() * 360)+','+Math.floor(Math.random() * 100)+'%,'+Math.floor(Math.random() * 50)+'%,'+(Math.random() * 1)+')';document.querySelectorAll('*').forEach(item =>{ item.style.backgroundColor=colr; });}, false);var bkd = 'url('+String("https://huggingface.co/front/assets/huggingface_logo-noborder.svg")+')';</script>
"""
api = HfApi()
datasets=api.list_datasets(filter="task_categories:text-generation",language="en",gated=False,limit=100)
outf='./output.csv'
lst=[]
def looky(value):
datasets=api.list_datasets(search=f"{value}",language="en",gated=False,limit=100)
return gr.CheckboxGroup([d.id for d in datasets], label="Select Datasets")
def preview(selected):
lst=[]
for selecd in selected:
datum=load_dataset(selecd, split='train', streaming=True).take(3)
lst.extend(datum)
fd=pd.DataFrame(lst)
return gr.Dataframe(headers=["Dataset", "Sample"], value=fd)
def build_dataset(selected_datasets, num_samples):
outf='./output.csv'
con = duckdb.connect(database=':memory:')
combined_data = []
for dataset in selected_datasets:
data = load_dataset(dataset, split='train', streaming=True).take(num_samples)
combined_data.extend(data)
df = pd.DataFrame(combined_data)
con.execute("CREATE TABLE dataset AS SELECT * FROM df")
result = con.execute("SELECT * FROM dataset").fetchall()
con.execute("COPY (SELECT * FROM dataset) TO 'output.csv' (HEADER, DELIMITER ',');")
return result,outf
with gr.Blocks(head=head_js,css=custom_css) as iface:
frst_sample=gr.Dataframe(value=None,label="View 3 Samples per selected dataset")
srchbx=gr.Textbox(label="Search datasets",placeholder="Search Datasets on the Hub. Type query..hit Enter.. this will update the dataset list below..")
with gr.Accordion("Multi-Select Datasets", open=False,):
with gr.Row():
dataset_selector = gr.CheckboxGroup([d.id for d in datasets], label="Multi-Select Datasets")
num_samples_input = gr.Number(value=10, label="Number of Samples to retrieve per Dataset")
build_button = gr.Button("Build Dataset", elem_id="moish")
out_way = gr.File()
output_display = gr.Dataframe(headers=["Dataset", "Sample"])
build_button.click(fn=build_dataset,inputs=[dataset_selector, num_samples_input],outputs=[output_display,out_way])
dataset_selector.change(preview,dataset_selector,frst_sample)
srchbx.change(looky,srchbx,dataset_selector)
iface.load(None,None,None,js="""() =>{var colr = 'rgba('+Math.floor(Math.random() * 256)+','+Math.floor(Math.random() * 256)+','+Math.floor(Math.random() * 256)+','+(Math.random() * 1)+')'; document.querySelectorAll('*').forEach(item =>{ item.style.backgroundColor=colr; }); var tin = document.getElementById('moish'); var parents=[]; function getAllParentNodes(element) {while (element.parentNode) {element = element.parentNode; element.style.background = bkd; parents.push(element); }; }; getAllParentNodes(tin);}""",)
iface.launch(debug=True) |