Spaces:
Sleeping
Sleeping
File size: 7,780 Bytes
cc63231 a81aa5e cc63231 a81aa5e cc63231 67848b0 cc63231 a44cf9f cc63231 6a049f9 07e5bed 6a049f9 07e5bed 6a049f9 07e5bed 6a049f9 07e5bed 6a049f9 07e5bed cc63231 e4aea0c cc63231 6a049f9 cc63231 34787b1 cc63231 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import numpy as np
from ultralytics import YOLO
import chromadb
from transformers import pipeline
from sklearn.metrics.pairwise import cosine_similarity
# Load segmentation model
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
# Load CLIP model and tokenizer
@st.cache_resource
def load_clip_model():
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, preprocess_val, tokenizer, device
clip_model, preprocess_val, tokenizer, device = load_clip_model()
# Load YOLOv8 model
#@st.cache_resource
#def load_yolo_model():
# return YOLO("./best.pt")
#yolo_model = load_yolo_model()
# Load chromaDB
client = chromadb.PersistentClient(path="./clothesDB_11Musinsa_20241024")
#collection = client.get_collection(name="clothes_items_ver3")
collection = client.get_collection(name="clothes_11_ver2")
# Helper functions
def load_image_from_url(url, max_retries=3):
for attempt in range(max_retries):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert('RGB')
return img
except (requests.RequestException, Image.UnidentifiedImageError) as e:
if attempt < max_retries - 1:
time.sleep(1)
else:
return None
def get_image_embedding(image):
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_tensor)
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy()
def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"]):
# Segment image
segments = segmenter(img)
# Create list of masks
mask_list = []
detected_categories = []
for s in segments:
if s['label'] in clothes:
mask_list.append(s['mask'])
detected_categories.append(s['label']) # Store detected categories
# Paste all masks on top of each other
final_mask = np.zeros_like(np.array(img)[:, :, 0]) # Initialize mask
for mask in mask_list:
current_mask = np.array(mask)
final_mask = np.maximum(final_mask, current_mask) # Use maximum to combine masks
# Convert final mask from np array to PIL image
final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255) # Convert to binary mask
# Apply mask to original image
img_with_alpha = img.convert("RGBA") # Ensure the image has an alpha channel
img_with_alpha.putalpha(final_mask)
return img_with_alpha.convert("RGB"), final_mask, detected_categories # Return detected categories
def find_similar_images(query_embedding, collection, top_k=5):
# ChromaDB์ query ๋ฉ์๋๋ฅผ ์ฌ์ฉํ์ฌ ์ ์ฌํ ํญ๋ชฉ ๊ฒ์
results = collection.query(
query_embeddings=[query_embedding],
n_results=top_k,
include=['metadatas', 'distances'] # ๋ฉํ๋ฐ์ดํฐ์ ์ ์ฌ๋ ๊ฐ์ ํจ๊ป ๋ฐํ
)
# ๊ฒฐ๊ณผ์์ ๋ฉํ๋ฐ์ดํฐ์ ์ ์ฌ๋๋ฅผ ์ถ์ถ
top_metadatas = results['metadatas'][0] # ๊ฐ ๋ฉํ๋ฐ์ดํฐ
top_distances = results['distances'][0] # ๊ฐ ์ ์ฌ๋ (๊ฑฐ๋ฆฌ๊ฐ ๊ฐ๊น์ธ์๋ก ์ ์ฌํจ)
# ๊ฒฐ๊ณผ๋ฅผ ๊ตฌ์กฐํ
structured_results = []
for metadata, distance in zip(top_metadatas, top_distances):
structured_results.append({
'info': metadata,
'similarity': 1 - distance # ๊ฑฐ๋ฆฌ๋ฅผ ์ ์ฌ๋๋ก ๋ณํ (1์ ๊ฐ๊น์ธ์๋ก ์ ์ฌ)
})
return structured_results
# ์ธ์
์ํ ์ด๊ธฐํ
if 'step' not in st.session_state:
st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
st.session_state.query_image_url = ''
if 'detections' not in st.session_state:
st.session_state.detections = []
if 'segmented_image' not in st.session_state: # Add segmented_image to session state
st.session_state.segmented_image = None
if 'selected_category' not in st.session_state:
st.session_state.selected_category = None
# Streamlit app
st.title("Advanced Fashion Search App")
# ๋จ๊ณ๋ณ ์ฒ๋ฆฌ
if st.session_state.step == 'input':
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
if st.button("Detect Clothing"):
if st.session_state.query_image_url:
query_image = load_image_from_url(st.session_state.query_image_url)
if query_image is not None:
st.session_state.query_image = query_image
# Perform segmentation
segmented_image, final_mask, detected_categories = segment_clothing(query_image)
st.session_state.segmented_image = segmented_image # Store segmented image in session state
st.session_state.detections = detected_categories # Store detected categories
st.image(segmented_image, caption="Segmented Image", use_column_width=True)
if st.session_state.detections:
st.session_state.step = 'select_category'
else:
st.warning("No clothing items detected in the image.")
else:
st.error("Failed to load the image. Please try another URL.")
else:
st.warning("Please enter an image URL.")
elif st.session_state.step == 'select_category':
st.image(st.session_state.segmented_image, caption="Segmented Image with Detected Categories", use_column_width=True)
st.subheader("Detected Clothing Categories:")
if st.session_state.detections:
selected_category = st.selectbox("Select a category to search:", st.session_state.detections)
if st.button("Search Similar Items"):
st.session_state.selected_category = selected_category
st.session_state.step = 'show_results'
else:
st.warning("No categories detected.")
elif st.session_state.step == 'show_results':
original_image = st.session_state.query_image.convert("RGB") # Convert to RGB before displaying
st.image(original_image, caption="Original Image", use_column_width=True)
# Get the embedding of the segmented image
query_embedding = get_image_embedding(st.session_state.segmented_image) # Use the segmented image from session state
similar_images = find_similar_images(query_embedding, collection)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
#st.image(img['image_url'], use_column_width=True)
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
category = img['info'].get('category')
if category:
st.write(f"Category: {category}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
if st.button("Start New Search"):
st.session_state.step = 'input'
st.session_state.query_image_url = ''
st.session_state.detections = []
st.session_state.segmented_image = None # Reset segmented_image |