Spaces:
Runtime error
Runtime error
File size: 3,216 Bytes
9d3184b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import gradio as gr import sentence_transformers from sentence_transformers import SentenceTransformer import torch from sentence_transformers.util import semantic_search import pandas as pd model = SentenceTransformer('gart-labor/eng-distilBERT-se-eclass') corpus = pd.read_json('corpus.jsonl', lines = True, encoding = 'utf-8') def predict(name, description): text = 'Description: '+ description + '; Name: ' + name query_embedding = model.encode(text, convert_to_tensor=True) corpus_embeddings = torch.Tensor(corpus["embeddings"]) output = sentence_transformers.util.semantic_search(query_embedding, corpus_embeddings, top_k = 5) preferedName1 = corpus.iloc[output[0][0].get('corpus_id'),2] definition1 = corpus.iloc[output[0][0].get('corpus_id'),1] IRDI1 = corpus.iloc[output[0][0].get('corpus_id'),4] score1 = output[0][0].get('score') preferedName2 = corpus.iloc[output[0][1].get('corpus_id'),2] definition2 = corpus.iloc[output[0][1].get('corpus_id'),1] IRDI2 = corpus.iloc[output[0][1].get('corpus_id'),4] score2 = output[0][1].get('score') preferedName3 = corpus.iloc[output[0][2].get('corpus_id'),2] definition3 = corpus.iloc[output[0][2].get('corpus_id'),1] IRDI3 = corpus.iloc[output[0][2].get('corpus_id'),4] score3 = output[0][2].get('score') preferedName4 = corpus.iloc[output[0][3].get('corpus_id'),2] definition4 = corpus.iloc[output[0][3].get('corpus_id'),1] IRDI4 = corpus.iloc[output[0][3].get('corpus_id'),4] score4 = output[0][3].get('score') preferedName5 = corpus.iloc[output[0][4].get('corpus_id'),2] definition5 = corpus.iloc[output[0][4].get('corpus_id'),1] IRDI5 = corpus.iloc[output[0][4].get('corpus_id'),4] score5 = output[0][4].get('score') df = [[preferedName1, IRDI1, score1], [preferedName2, IRDI2, score2],[preferedName3, IRDI3, score3],[preferedName4, IRDI4, score4], [preferedName5, IRDI5, score5]] return pd.DataFrame(df) interface = gr.Interface(fn = predict, inputs = [gr.Textbox(label="Name:", placeholder="Name of the Pump Property", lines=1), gr.Textbox(label="Description:", placeholder="Description of the Pump Property", lines=1)], #outputs = [gr.Textbox(label = 'preferedName'),gr.Textbox(label = 'definition'), gr.Textbox(label = 'IDRI'),gr.Textbox(label = 'score')], outputs = [gr.Dataframe(row_count = (5, "fixed"), col_count=(3, "fixed"), label="Predictions", headers=['ECLASS preferedName', 'ECLASS IRDI', 'simularity score'])], examples = [['Device type', 'describing a set of common specific characteristics in products or goods'], ['Item type','the type of product, an item can be assigned to'], ['Nominal power','power being consumed by or dissipated within an electric component as a variable'], ['Power consumption', 'power that is typically taken from the auxiliary power supply when the device is operating normally']], #theme = 'huggingface', title = 'ECLASS-Property-Search', description = "This is a semantic search algorithm that mapps unknown pump properties to the ECLASS standard.") interface.launch() |