File size: 660 Bytes
6b0c915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import gradio as gr
import openai

# Initialize OpenAI chat model
openai.api_key = "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"
chat_model = "gpt-3.5-turbo"

# Initialize your Chroma vector database
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)

# Function to answer questions
def answer_question(question):
    qa_chain = RetrievalQA.from_chain_type(
    llm,
    retriever=vectordb.as_retriever())
    result = qa_chain({"query": question})
    return result['result']

# Create a Gradio interface
iface = gr.Interface(fn=answer_question, inputs="text", outputs="text")

# Launch the Gradio app
iface.launch()