Spaces:
Sleeping
Sleeping
File size: 3,844 Bytes
6880cdd f113093 6880cdd 6469332 6880cdd 6469332 6880cdd 6469332 6880cdd 1650e3d 6880cdd 98d2076 6dde7e1 6880cdd 6469332 6880cdd 6469332 6880cdd 6469332 6880cdd 98d2076 6880cdd 00c0fa0 6880cdd 6469332 6880cdd 6469332 6880cdd c210da8 6d7abe9 6880cdd 6dde7e1 3217373 6880cdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import pandas as pd
import streamlit as st
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
#dowload file
#read files
data = pd.read_csv('owid-monkeypox-data.csv')
data = data[['location','iso_code','date','new_cases','total_cases','new_deaths','total_deaths']]
pop = pd.read_csv('API_SP.POP.TOTL_DS2_en_csv_v2_4578059.csv')
#preprocessiong data
all_location = {}
for i in data['iso_code'].unique():
all_location[i] = data[data['iso_code'] == i].reset_index(drop=True)
popu = pop[['Country Code','2021']].to_dict('index')
pop_dict = {}
for i in popu.values():
pop_dict[i['Country Code']] = i['2021']
pop_dict['GLP'] = 400000
pop_dict['MTQ'] = 376480
pop_dict['OWID_WRL'] = 7836630792
code = dict(data.groupby('location')['iso_code'].unique())
# SIR model differential equations.
def deriv(x, t, beta, gamma):
s, i, r = x
dsdt = -beta * s * i
didt = beta * s * i - gamma * i
drdt = gamma * i
return [dsdt, didt, drdt]
#plot model
def plotdata(t, s, i,r,R0, e=None):
# plot the data
fig = plt.figure(figsize=(12,6))
ax = [fig.add_subplot(221, axisbelow=True),
fig.add_subplot(223),
fig.add_subplot(122)]
ax[0].plot(t, s, lw=3, label='Fraction Susceptible')
ax[0].plot(t, i, lw=3, label='Fraction Infective')
ax[0].plot(t, r, lw=3, label='Recovered')
ax[0].set_title('Susceptible and Recovered Populations')
ax[0].set_xlabel('Time /days')
ax[0].set_ylabel('Fraction')
ax[1].plot(t, i, lw=3, label='Infective')
ax[1].set_title('Infectious Population')
if e is not None: ax[1].plot(t, e, lw=3, label='Exposed')
ax[1].set_ylim(0, 1.0)
ax[1].set_xlabel('Time /days')
ax[1].set_ylabel('Fraction')
ax[2].plot(s, i, lw=3, label='s, i trajectory')
ax[2].plot([1/R0, 1/R0], [0, 1], '--', lw=3, label='di/dt = 0')
ax[2].plot(s[0], i[0], '.', ms=20, label='Initial Condition')
ax[2].plot(s[-1], i[-1], '.', ms=20, label='Final Condition')
ax[2].set_title('State Trajectory')
ax[2].set_aspect('equal')
ax[2].set_ylim(0, 1.05)
ax[2].set_xlim(0, 1.05)
ax[2].set_xlabel('Susceptible')
ax[2].set_ylabel('Infectious')
for a in ax:
a.grid(True)
a.legend()
plt.tight_layout()
return fig
#final model
def SIR(country,t_infective):
# parameter values
t_infective = t_infective
gamma = 1/t_infective
beta = (all_location[country]['new_cases'].sum()/pop_dict[country])/len(all_location[country]['date'].unique())
R0 = beta/gamma
# initial number of infected and recovered individuals
i_initial = all_location[country]['new_cases'].sum()/pop_dict[country]
r_initial = 0.00
s_initial = 1 - i_initial - r_initial
t = np.linspace(0, 100, 1000)
x_initial = s_initial, i_initial, r_initial
soln = odeint(deriv, x_initial, t, args=(beta, gamma))
s, i, r = soln.T
e = None
return R0,t_infective,beta,gamma,plotdata(t, s, i,r,R0)
def main():
st.title("SIR Model for Monkeypox")
with st.form("questionaire"):
country = st.selectbox("Country",data['location'].unique())# user's input
recovery = st.slider("How long Monkeypox recover?", 21, 31, 21)# user's input
country = code[country][0]
# clicked==True only when the button is clicked
clicked = st.form_submit_button("Show Graph")
if clicked:
# Show SIR
SIR_param = SIR(country,recovery)
st.pyplot(SIR_param[-1])
st.success("SIR model parameters for "+str(country)+" is")
st.success("R0 = "+str(SIR_param[0]))
st.success("Beta = "+str(SIR_param[2]))
st.success("Gamma = "+str(SIR_param[3]))
# Run main()
if __name__ == "__main__":
main() |