File size: 3,844 Bytes
6880cdd
 
 
 
 
f113093
 
6880cdd
 
 
 
6469332
 
6880cdd
6469332
6880cdd
 
6469332
 
 
 
 
 
 
 
 
 
 
 
 
6880cdd
 
 
 
 
 
 
 
 
 
1650e3d
6880cdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d2076
 
6dde7e1
6880cdd
 
 
 
 
6469332
 
 
6880cdd
 
6469332
6880cdd
 
6469332
6880cdd
 
 
 
 
 
 
98d2076
6880cdd
 
 
 
 
00c0fa0
6880cdd
6469332
6880cdd
 
 
6469332
6880cdd
 
c210da8
6d7abe9
6880cdd
6dde7e1
 
3217373
6880cdd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import pandas as pd
import streamlit as st
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")

#dowload file

#read files
data = pd.read_csv('owid-monkeypox-data.csv')
data = data[['location','iso_code','date','new_cases','total_cases','new_deaths','total_deaths']]

pop = pd.read_csv('API_SP.POP.TOTL_DS2_en_csv_v2_4578059.csv')
#preprocessiong data
all_location = {}
for i in data['iso_code'].unique():
  all_location[i] = data[data['iso_code'] == i].reset_index(drop=True)

popu = pop[['Country Code','2021']].to_dict('index')
pop_dict = {}
for i in popu.values():
  pop_dict[i['Country Code']] = i['2021']

pop_dict['GLP'] = 400000
pop_dict['MTQ'] = 376480
pop_dict['OWID_WRL'] = 7836630792

code = dict(data.groupby('location')['iso_code'].unique())

# SIR model differential equations.
def deriv(x, t, beta, gamma):
    s, i, r = x
    dsdt = -beta * s * i
    didt = beta * s * i - gamma * i
    drdt =  gamma * i
    return [dsdt, didt, drdt]

#plot model
def plotdata(t, s, i,r,R0, e=None):
    # plot the data
    fig = plt.figure(figsize=(12,6))
    ax = [fig.add_subplot(221, axisbelow=True), 
          fig.add_subplot(223),
          fig.add_subplot(122)]

    ax[0].plot(t, s, lw=3, label='Fraction Susceptible')
    ax[0].plot(t, i, lw=3, label='Fraction Infective')
    ax[0].plot(t, r, lw=3, label='Recovered')
    ax[0].set_title('Susceptible and Recovered Populations')
    ax[0].set_xlabel('Time /days')
    ax[0].set_ylabel('Fraction')

    ax[1].plot(t, i, lw=3, label='Infective')
    ax[1].set_title('Infectious Population')
    if e is not None: ax[1].plot(t, e, lw=3, label='Exposed')
    ax[1].set_ylim(0, 1.0)
    ax[1].set_xlabel('Time /days')
    ax[1].set_ylabel('Fraction')

    ax[2].plot(s, i, lw=3, label='s, i trajectory')
    ax[2].plot([1/R0, 1/R0], [0, 1], '--', lw=3, label='di/dt = 0')
    ax[2].plot(s[0], i[0], '.', ms=20, label='Initial Condition')
    ax[2].plot(s[-1], i[-1], '.', ms=20, label='Final Condition')
    ax[2].set_title('State Trajectory')
    ax[2].set_aspect('equal')
    ax[2].set_ylim(0, 1.05)
    ax[2].set_xlim(0, 1.05)
    ax[2].set_xlabel('Susceptible')
    ax[2].set_ylabel('Infectious')

    for a in ax: 
        a.grid(True)
        a.legend()

    plt.tight_layout()
    
    return fig
     

#final model
def SIR(country,t_infective):
  # parameter values
  t_infective = t_infective
  gamma = 1/t_infective
  beta = (all_location[country]['new_cases'].sum()/pop_dict[country])/len(all_location[country]['date'].unique())
  R0 = beta/gamma

  # initial number of infected and recovered individuals
  i_initial = all_location[country]['new_cases'].sum()/pop_dict[country]
  r_initial = 0.00
  s_initial = 1 - i_initial - r_initial
  
  t = np.linspace(0, 100, 1000)
  x_initial = s_initial, i_initial, r_initial
  soln = odeint(deriv, x_initial, t, args=(beta, gamma))
  s, i, r = soln.T
  e = None


  return R0,t_infective,beta,gamma,plotdata(t, s, i,r,R0)

def main():
    st.title("SIR Model for Monkeypox")

    with st.form("questionaire"):
        country = st.selectbox("Country",data['location'].unique())# user's input
        recovery = st.slider("How long Monkeypox recover?", 21, 31, 21)# user's input
        country = code[country][0]
        # clicked==True only when the button is clicked
        clicked = st.form_submit_button("Show Graph")
        if clicked:
        
            # Show SIR
            SIR_param = SIR(country,recovery)
            
            st.pyplot(SIR_param[-1])
            st.success("SIR model parameters for "+str(country)+" is")
            st.success("R0 = "+str(SIR_param[0]))
            st.success("Beta = "+str(SIR_param[2]))
            st.success("Gamma = "+str(SIR_param[3]))

# Run main()
if __name__ == "__main__":
    main()