File size: 12,041 Bytes
e8dca02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc859d1
e8dca02
 
 
 
 
 
 
 
 
 
cc859d1
e8dca02
 
 
cc859d1
e8dca02
cc859d1
e8dca02
 
 
 
 
 
 
 
 
 
cc859d1
e8dca02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc859d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8dca02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc859d1
e8dca02
cc859d1
e8dca02
cc859d1
e8dca02
cc859d1
 
e8dca02
cc859d1
e8dca02
cc859d1
 
 
e8dca02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc859d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# ------------------------------------------
# TextDiffuser: Diffusion Models as Text Painters
# Paper Link: https://arxiv.org/abs/2305.10855
# Code Link: https://github.com/microsoft/unilm/tree/master/textdiffuser
# Copyright (c) Microsoft Corporation.
# This file defines a set of commonly used utility functions.
# ------------------------------------------

import os
import re
import cv2
import math
import shutil
import string
import textwrap
import numpy as np
from PIL import Image, ImageFont, ImageDraw, ImageOps

from typing import *

# define alphabet and alphabet_dic
alphabet = string.digits + string.ascii_lowercase + string.ascii_uppercase + string.punctuation + ' ' # len(aphabet) = 95
alphabet_dic = {}
for index, c in enumerate(alphabet):
    alphabet_dic[c] = index + 1 # the index 0 stands for non-character
    


def transform_mask_pil(mask_root, size):
    """
    This function extracts the mask area and text area from the images.
    
    Args:
        mask_root (str): The path of mask image.
            * The white area is the unmasked area
            * The gray area is the masked area
            * The white area is the text area
    """
    img = np.array(mask_root)
    img = cv2.resize(img, (size, size), interpolation=cv2.INTER_NEAREST)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, binary = cv2.threshold(gray, 250, 255, cv2.THRESH_BINARY) # pixel value is set to 0 or 255 according to the threshold
    return 1 - (binary.astype(np.float32) / 255) 
    

def transform_mask(mask_root, size):
    """
    This function extracts the mask area and text area from the images.
    
    Args:
        mask_root (str): The path of mask image.
            * The white area is the unmasked area
            * The gray area is the masked area
            * The white area is the text area
    """
    img = cv2.imread(mask_root)
    img = cv2.resize(img, (size, size), interpolation=cv2.INTER_NEAREST)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, binary = cv2.threshold(gray, 250, 255, cv2.THRESH_BINARY) # pixel value is set to 0 or 255 according to the threshold
    return 1 - (binary.astype(np.float32) / 255) 


def segmentation_mask_visualization(font_path: str, segmentation_mask: np.array):
    """
    This function visualizes the segmentaiton masks with characters.
    
    Args:
        font_path (str): The path of font. We recommand to use Arial.ttf
        segmentation_mask (np.array): The character-level segmentation mask.
    """
    segmentation_mask = cv2.resize(segmentation_mask, (64, 64), interpolation=cv2.INTER_NEAREST)
    font = ImageFont.truetype(font_path, 8)
    blank = Image.new('RGB', (512,512), (0,0,0))
    d = ImageDraw.Draw(blank)
    for i in range(64):
        for j in range(64):
            if int(segmentation_mask[i][j]) == 0 or int(segmentation_mask[i][j])-1 >= len(alphabet): 
                continue
            else:
                d.text((j*8, i*8), alphabet[int(segmentation_mask[i][j])-1], font=font, fill=(0, 255, 0))
    return blank


def make_caption_pil(font_path: str, captions: List[str]):
    """
    This function converts captions into pil images.
    
    Args:
        font_path (str): The path of font. We recommand to use Arial.ttf
        captions (List[str]): List of captions.
    """
    caption_pil_list = []
    font = ImageFont.truetype(font_path, 18)

    for caption in captions:
        border_size = 2
        img = Image.new('RGB', (512-4,48-4), (255,255,255)) 
        img = ImageOps.expand(img, border=(border_size, border_size, border_size, border_size), fill=(127, 127, 127))
        draw = ImageDraw.Draw(img)
        border_size = 2
        text = caption
        lines = textwrap.wrap(text, width=40)
        x, y = 4, 4
        line_height = font.getsize('A')[1] + 4 

        start = 0
        for line in lines:
            draw.text((x, y+start), line, font=font, fill=(200, 127, 0))
            y += line_height

        caption_pil_list.append(img)
    return caption_pil_list


def filter_segmentation_mask(segmentation_mask: np.array):
    """
    This function removes some noisy predictions of segmentation masks.
    
    Args:
        segmentation_mask (np.array): The character-level segmentation mask.
    """
    segmentation_mask[segmentation_mask==alphabet_dic['-']] = 0
    segmentation_mask[segmentation_mask==alphabet_dic[' ']] = 0
    return segmentation_mask
    
    

def combine_image(args, resolution, sub_output_dir: str, pred_image_list: List, image_pil: Image, character_mask_pil: Image, character_mask_highlight_pil: Image, caption_pil_list: List):
    """
    This function combines all the outputs and useful inputs together.
    
    Args:
        args (argparse.ArgumentParser): The arguments.
        pred_image_list (List): List of predicted images.
        image_pil (Image): The original image.
        character_mask_pil (Image): The character-level segmentation mask.
        character_mask_highlight_pil (Image): The character-level segmentation mask highlighting character regions with green color.
        caption_pil_list (List): List of captions.
    """
    
    
    size = len(pred_image_list)
    
    if size == 1:
        return pred_image_list[0]
    elif size == 2:
        blank = Image.new('RGB', (resolution*2, resolution), (0,0,0))
        blank.paste(pred_image_list[0],(0,0))
        blank.paste(pred_image_list[1],(resolution,0))
    elif size == 3:
        blank = Image.new('RGB', (resolution*3, resolution), (0,0,0))
        blank.paste(pred_image_list[0],(0,0))
        blank.paste(pred_image_list[1],(resolution,0))
        blank.paste(pred_image_list[2],(resolution*2,0))
    elif size == 4:
        blank = Image.new('RGB', (resolution*2, resolution*2), (0,0,0))
        blank.paste(pred_image_list[0],(0,0))
        blank.paste(pred_image_list[1],(resolution,0))
        blank.paste(pred_image_list[2],(0,resolution))
        blank.paste(pred_image_list[3],(resolution,resolution))

    
    return blank
    
    
def combine_image_gradio(args, size, sub_output_dir: str, pred_image_list: List, image_pil: Image, character_mask_pil: Image, character_mask_highlight_pil: Image, caption_pil_list: List):
    """
    This function combines all the outputs and useful inputs together.
    
    Args:
        args (argparse.ArgumentParser): The arguments.
        pred_image_list (List): List of predicted images.
        image_pil (Image): The original image.
        character_mask_pil (Image): The character-level segmentation mask.
        character_mask_highlight_pil (Image): The character-level segmentation mask highlighting character regions with green color.
        caption_pil_list (List): List of captions.
    """
    
    size = len(pred_image_list)
    
    if size == 1:
        return pred_image_list[0]
    elif size == 2:
        blank = Image.new('RGB', (size*2, size), (0,0,0))
        blank.paste(pred_image_list[0],(0,0))
        blank.paste(pred_image_list[1],(size,0))
    elif size == 3:
        blank = Image.new('RGB', (size*3, size), (0,0,0))
        blank.paste(pred_image_list[0],(0,0))
        blank.paste(pred_image_list[1],(size,0))
        blank.paste(pred_image_list[2],(size*2,0))
    elif size == 4:
        blank = Image.new('RGB', (size*2, size*2), (0,0,0))
        blank.paste(pred_image_list[0],(0,0))
        blank.paste(pred_image_list[1],(size,0))
        blank.paste(pred_image_list[2],(0,size))
        blank.paste(pred_image_list[3],(size,size))

    
    return blank
    
def get_width(font_path, text):
    """
    This function calculates the width of the text.
    
    Args:
        font_path (str): user prompt.
        text (str): user prompt.
    """
    font = ImageFont.truetype(font_path, 24)
    width, _ = font.getsize(text)
    return width



def get_key_words(text: str):
    """
    This function detect keywords (enclosed by quotes) from user prompts. The keywords are used to guide the layout generation.
    
    Args:
        text (str): user prompt.
    """

    words = []
    text = text
    matches = re.findall(r"'(.*?)'", text) # find the keywords enclosed by ''
    if matches:
        for match in matches:
            words.extend(match.split())
            
    if len(words) >= 8:
        return []
   
    return words


def adjust_overlap_box(box_output, current_index):
    """
    This function adjust the overlapping boxes.
    
    Args:
        box_output (List): List of predicted boxes.
        current_index (int): the index of current box.
    """
    
    if current_index == 0:
        return box_output
    else:
        # judge whether it contains overlap with the last output
        last_box = box_output[0, current_index-1, :]
        xmin_last, ymin_last, xmax_last, ymax_last = last_box
        
        current_box = box_output[0, current_index, :]
        xmin, ymin, xmax, ymax = current_box
        
        if xmin_last <= xmin <= xmax_last and ymin_last <= ymin <= ymax_last:
            print('adjust overlapping')
            distance_x = xmax_last - xmin
            distance_y = ymax_last - ymin
            if distance_x <= distance_y:
                # avoid overlap
                new_x_min = xmax_last + 0.025
                new_x_max = xmax - xmin + xmax_last + 0.025
                box_output[0,current_index,0] = new_x_min
                box_output[0,current_index,2] = new_x_max
            else:
                new_y_min = ymax_last + 0.025
                new_y_max = ymax - ymin + ymax_last + 0.025
                box_output[0,current_index,1] = new_y_min
                box_output[0,current_index,3] = new_y_max  
                
        elif xmin_last <= xmin <= xmax_last and ymin_last <= ymax <= ymax_last:
            print('adjust overlapping')
            new_x_min = xmax_last + 0.05
            new_x_max = xmax - xmin + xmax_last + 0.05
            box_output[0,current_index,0] = new_x_min
            box_output[0,current_index,2] = new_x_max
                    
        return box_output
    
    
def shrink_box(box, scale_factor = 0.9):
    """
    This function shrinks the box.
    
    Args:
        box (List): List of predicted boxes.
        scale_factor (float): The scale factor of shrinking.
    """
    
    x1, y1, x2, y2 = box
    x1_new = x1 + (x2 - x1) * (1 - scale_factor) / 2
    y1_new = y1 + (y2 - y1) * (1 - scale_factor) / 2
    x2_new = x2 - (x2 - x1) * (1 - scale_factor) / 2
    y2_new = y2 - (y2 - y1) * (1 - scale_factor) / 2
    return (x1_new, y1_new, x2_new, y2_new)


def adjust_font_size(args, width, height, draw, text):
    """
    This function adjusts the font size.
    
    Args:
        args (argparse.ArgumentParser): The arguments.
        width (int): The width of the text.
        height (int): The height of the text.
        draw (ImageDraw): The ImageDraw object.
        text (str): The text.
    """
    
    size_start = height
    while True:
        font = ImageFont.truetype(args.font_path, size_start)
        text_width, _ = draw.textsize(text, font=font)
        if text_width >= width:
            size_start = size_start - 1
        else:
            return size_start
    
    
def inpainting_merge_image(original_image, mask_image, inpainting_image):
    """
    This function merges the original image, mask image and inpainting image.
        
    Args:
        original_image (PIL.Image): The original image.
        mask_image (PIL.Image): The mask images.
        inpainting_image (PIL.Image): The inpainting images.
    """
    
    original_image = original_image.resize((512, 512))
    mask_image = mask_image.resize((512, 512))
    inpainting_image = inpainting_image.resize((512, 512))
    mask_image.convert('L')
    threshold = 250 
    table = []
    for i in range(256):
        if i < threshold:
            table.append(1)
        else:
            table.append(0)
    mask_image = mask_image.point(table, "1")
    merged_image = Image.composite(inpainting_image, original_image, mask_image)
    return merged_image