Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,163 Bytes
b13c502 c98b207 d068d4a c98b207 3f5fb82 b13c502 c98b207 300e23e c98b207 6e89311 c98b207 f8349ca b13c502 300e23e b13c502 d616ff6 b13c502 c98b207 b13c502 300e23e 90b9de8 b13c502 c98b207 b13c502 300e23e c98b207 2692054 6904764 90b9de8 67d3fd3 300e23e 775d6e0 0620ff6 b13c502 0620ff6 b13c502 300e23e b13c502 300e23e b13c502 300e23e c98b207 300e23e c98b207 300e23e bf65021 300e23e bf65021 c98b207 cf7a112 b13c502 cf7a112 e7455bb 60e7596 b13c502 60e7596 e7455bb c98b207 0d0766f c98b207 a927087 c98b207 300e23e c98b207 a927087 c98b207 bb45d22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
MODEL_LIST = ["THUDM/glm-4v-9b"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]
TITLE = "<h1><center>VL-Chatbox</center></h1>"
DESCRIPTION = f'<h3><center>MODEL: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></center></h3>'
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(0)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model.eval()
@spaces.GPU()
def stream_chat(message, history: list, temperature: float, max_length: int):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
if message["files"]:
image = Image.open(message["files"][-1]).convert('RGB')
conversation.append({"role": "user", "image": image, "content": message['text']})
else:
if len(history) == 0:
raise gr.Error("Please upload an image first.")
image = None
else:
image = Image.open(history[0][1])
for prompt, answer in history:
if answer is None:
conversation.extend([{"role": "user", "content": prompt},{"role": "assistant", "content": ""}])
else:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "image": image, "content": message['text']})
print(f"Conversation is -\n{conversation}")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
max_length=max_length,
streamer=streamer,
do_sample=True,
top_k=1,
temperature=temperature,
repetition_penalty=1.2,
)
gen_kwargs = {**input_ids, **generate_kwargs}
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=450)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_types=["image"],
placeholder="Enter message or upload file...",
show_label=False,
)
EXAMPLES = [
[{"text": "Describe it in great detailed.", "files": ["./laptop.jpg"]}],
[{"text": "Describe it in great detailed.", "files": ["./hotel.jpg"]}],
[{"text": "Describe it in great detailed.", "files": ["./spacecat.png"]}]
]
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max Length",
render=False,
),
],
),
gr.Examples(EXAMPLES,[chat_input])
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False) |