Spaces:
Running
Running
File size: 7,726 Bytes
891c8f0 e08d766 891c8f0 e08d766 cda293e e08d766 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 7df08c6 c5edd31 891c8f0 e08d766 c5edd31 891c8f0 c5edd31 e08d766 c5edd31 7df08c6 c5edd31 891c8f0 c5edd31 e08d766 c5edd31 7df08c6 c5edd31 891c8f0 c5edd31 7df08c6 c5edd31 891c8f0 7df08c6 891c8f0 7df08c6 c5edd31 891c8f0 e08d766 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import gradio as gr
import requests
import json
import os
import time
from collections import defaultdict
from PIL import Image
import io
BASE_URL = "https://api.jigsawstack.com/v1"
headers = {
"x-api-key": os.getenv("JIGSAWSTACK_API_KEY")
}
# Rate limiting configuration
request_times = defaultdict(list)
MAX_REQUESTS = 20 # Maximum requests per time window
TIME_WINDOW = 3600 # Time window in seconds (1 hour)
def get_real_ip(request: gr.Request):
"""Extract real IP address using x-forwarded-for header or fallback"""
if not request:
return "unknown"
forwarded = request.headers.get("x-forwarded-for")
if forwarded:
ip = forwarded.split(",")[0].strip() # First IP in the list is the client's
else:
ip = request.client.host # fallback
return ip
def check_rate_limit(request: gr.Request):
"""Check if the current request exceeds rate limits"""
if not request:
return True, "Rate limit check failed - no request info"
ip = get_real_ip(request)
now = time.time()
# Clean up old timestamps outside the time window
request_times[ip] = [t for t in request_times[ip] if now - t < TIME_WINDOW]
# Check if rate limit exceeded
if len(request_times[ip]) >= MAX_REQUESTS:
time_remaining = int(TIME_WINDOW - (now - request_times[ip][0]))
time_remaining_minutes = round(time_remaining / 60, 1)
time_window_minutes = round(TIME_WINDOW / 60, 1)
return False, f"Rate limit exceeded. You can make {MAX_REQUESTS} requests per {time_window_minutes} minutes. Try again in {time_remaining_minutes} minutes."
# Add current request timestamp
request_times[ip].append(now)
return True, ""
def detect_objects(request: gr.Request, image_url=None, file_store_key=None, prompts=None, features=None):
rate_limit_ok, rate_limit_msg = check_rate_limit(request)
if not rate_limit_ok:
return f"β {rate_limit_msg}", "", "", None
if not image_url and not file_store_key:
return "β Please provide either an image URL or file store key.", "", "", None
if image_url and file_store_key:
return "β Provide only one: image URL or file store key.", "", "", None
try:
payload = {}
if image_url:
payload["url"] = image_url
if file_store_key:
payload["file_store_key"] = file_store_key
# Add optional parameters
if prompts:
payload["prompts"] = prompts
if features:
payload["features"] = features
# Always return annotated image
payload["annotated_image"] = True
# Always use url as return_type
payload["return_type"] = "url"
response = requests.post(f"{BASE_URL}/ai/object_detection", headers=headers, json=payload)
if response.status_code != 200:
return f"β Error: {response.status_code} - {response.text}", "", "", None
result = response.json()
if not result.get("success"):
return "β Detection failed.", "", "", None
status = "β
Detection successful!"
objects = result.get("objects", [])
annotated_image_url = result.get("annotated_image")
# Create description with object details
description = f"Image Size: {result.get('width', 'Unknown')} x {result.get('height', 'Unknown')}\n\n"
description += f"Total Objects Detected: {len(objects)}\n\n"
for i, obj in enumerate(objects):
bounds = obj.get("bounds", {})
label = obj.get("label", "Unknown")
bound_text = ""
if bounds:
width = bounds.get("width", "Unknown")
height = bounds.get("height", "Unknown")
top_left = bounds.get("top_left", {})
if top_left:
x, y = top_left.get("x", "?"), top_left.get("y", "?")
bound_text = f"Position: ({x}, {y}), Size: {width}x{height}"
description += f"β’ {label}\n {bound_text}\n"
raw_json = json.dumps(result, indent=2)
return status, description.strip(), raw_json, annotated_image_url
except Exception as e:
return f"β Error: {str(e)}", "", "", None
with gr.Blocks() as demo:
gr.Markdown("""
<div style='text-align: center; margin-bottom: 24px;'>
<h1 style='font-size:2.2em; margin-bottom: 0.2em;'>π§© Object Detection</h1>
<p style='font-size:1.2em; margin-top: 0;'>Detect objects within images with great accuracy using AI models.</p>
<p style='font-size:1em; margin-top: 0.5em;'>For more details and API usage, see the <a href='https://jigsawstack.com/docs/api-reference/ai/object-detection' target='_blank'>documentation</a>.</p>
</div>
""")
with gr.Row():
with gr.Column():
input_type = gr.Radio(choices=["Image URL", "File Store Key"], value="Image URL", label="Input Type")
image_url = gr.Textbox(label="Image URL", placeholder="https://example.com/image.jpg", visible=True)
file_store_key = gr.Textbox(label="File Store Key", placeholder="my-image.jpg", visible=False)
# Advanced options
prompts = gr.Textbox(label="Prompts (comma-separated)", placeholder="wine glass, bottle, cup", info="Targeted object detection prompts")
features = gr.CheckboxGroup(choices=["object_detection", "gui"], value=["object_detection"], label="Features")
detect_btn = gr.Button("π Detect Objects")
clear_btn = gr.Button("Clear")
with gr.Column():
status_box = gr.Textbox(label="Status", interactive=False)
desc_display = gr.Textbox(label="Object Details", lines=10, interactive=False)
# Annotated image display - always visible
annotated_image_display = gr.Image(label="Annotated Image")
json_box = gr.Accordion("Raw JSON Response", open=False)
with json_box:
json_output = gr.Textbox(show_label=False, lines=20, interactive=False)
def toggle_inputs(choice):
return (
gr.update(visible=(choice == "Image URL")),
gr.update(visible=(choice == "File Store Key"))
)
input_type.change(fn=toggle_inputs, inputs=input_type, outputs=[image_url, file_store_key])
def on_detect(input_mode, url, key, prompts_text, features_list, request: gr.Request):
# Parse prompts
prompts_list = None
if prompts_text.strip():
prompts_list = [p.strip() for p in prompts_text.split(",") if p.strip()]
if input_mode == "Image URL":
return detect_objects(
request=request,
image_url=url.strip(),
prompts=prompts_list,
features=features_list
)
else:
return detect_objects(
request=request,
file_store_key=key.strip(),
prompts=prompts_list,
features=features_list
)
detect_btn.click(fn=on_detect, inputs=[
input_type, image_url, file_store_key, prompts, features
], outputs=[status_box, desc_display, json_output, annotated_image_display])
def clear_all():
return "Image URL", "", "", "", "", ["object_detection"], "", "", "", None
clear_btn.click(fn=clear_all, inputs=[], outputs=[
input_type, image_url, file_store_key, prompts, features,
status_box, desc_display, json_output, annotated_image_display
])
demo.launch()
|