Spaces:
Running
Running
File size: 10,503 Bytes
97a0620 3612cb3 97a0620 3612cb3 97a0620 3612cb3 97a0620 3612cb3 37f30f2 3612cb3 97a0620 3612cb3 97a0620 3612cb3 97a0620 2c9a284 97a0620 2c9a284 97a0620 2c9a284 97a0620 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import gradio as gr
import requests
import json
import os
import time
from collections import defaultdict
from PIL import Image
import io
BASE_URL = "https://api.jigsawstack.com/v1"
headers = {
"x-api-key": os.getenv("JIGSAWSTACK_API_KEY")
}
# Rate limiting configuration
request_times = defaultdict(list)
MAX_REQUESTS = 20 # Maximum requests per time window
TIME_WINDOW = 3600 # Time window in seconds (1 hour)
def get_real_ip(request: gr.Request):
"""Extract real IP address using x-forwarded-for header or fallback"""
if not request:
return "unknown"
forwarded = request.headers.get("x-forwarded-for")
if forwarded:
ip = forwarded.split(",")[0].strip() # First IP in the list is the client's
else:
ip = request.client.host # fallback
return ip
def check_rate_limit(request: gr.Request):
"""Check if the current request exceeds rate limits"""
if not request:
return True, "Rate limit check failed - no request info"
ip = get_real_ip(request)
now = time.time()
# Clean up old timestamps outside the time window
request_times[ip] = [t for t in request_times[ip] if now - t < TIME_WINDOW]
# Check if rate limit exceeded
if len(request_times[ip]) >= MAX_REQUESTS:
time_remaining = int(TIME_WINDOW - (now - request_times[ip][0]))
time_remaining_minutes = round(time_remaining / 60, 1)
time_window_minutes = round(TIME_WINDOW / 60, 1)
return False, f"Rate limit exceeded. You can make {MAX_REQUESTS} requests per {time_window_minutes} minutes. Try again in {time_remaining_minutes} minutes."
# Add current request timestamp
request_times[ip].append(now)
return True, ""
def enhanced_ai_scrape(input_method, url, html, prompts_str, selector, page_pos, request: gr.Request):
def error_response(message):
return (
message,
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
# Check rate limit first
rate_limit_ok, rate_limit_msg = check_rate_limit(request)
if not rate_limit_ok:
return error_response(f"Rate limit exceeded: {rate_limit_msg}")
try:
# Validate element prompts
prompts = [p.strip() for p in prompts_str.split(",") if p.strip()]
if not prompts:
return error_response("Error: No element prompts provided.")
if len(prompts) > 5:
return error_response("Error: Maximum 5 element prompts allowed.")
payload = {
"element_prompts": prompts,
"root_element_selector": selector or "main",
"page_position": int(page_pos) if str(page_pos).strip().isdigit() else 1
}
# Add URL or HTML based on input method
if input_method == "URL":
if not url or not url.strip():
return error_response("Error: URL is required when using URL input method.")
payload["url"] = url.strip()
elif input_method == "HTML Content":
if not html or not html.strip():
return error_response("Error: HTML content is required when using HTML input method.")
payload["html"] = html.strip()
response = requests.post(f"{BASE_URL}/ai/scrape", headers=headers, json=payload)
response.raise_for_status()
result = response.json()
if not result.get("success"):
return error_response(f"Error: Scraping failed - {result.get('message', 'Unknown error')}")
# Extract all the data
context = result.get("context", {})
selectors = result.get("selectors", {})
data = result.get("data", [])
links = result.get("link", [])
current_page = result.get("page_position", 1)
total_pages = result.get("page_position_length", 1)
# Format pagination info
pagination_text = f"Page {current_page} of {total_pages}"
if total_pages > 1:
pagination_text += f" (Total pages available: {total_pages})"
status_text = f"✅ Successfully scraped {len(data)} data items"
if context:
status_text += f" with {len(context)} context elements"
return (
status_text,
gr.update(value=context, visible=True if context else False),
gr.update(value=selectors, visible=True if selectors else False),
gr.update(value=data, visible=True if data else False),
gr.update(value=links, visible=True if links else False),
gr.update(value=pagination_text, visible=True),
)
except requests.exceptions.RequestException as req_err:
return error_response(f"Request failed: {str(req_err)}")
except Exception as e:
return error_response(f"Unexpected error: {str(e)}")
def get_rate_limit_status(request: gr.Request):
"""Get current rate limit status for the user"""
if not request:
return {"error": "Unable to get request info"}
ip = get_real_ip(request)
now = time.time()
# Clean up old timestamps
request_times[ip] = [t for t in request_times[ip] if now - t < TIME_WINDOW]
current_requests = len(request_times[ip])
time_window_minutes = round(TIME_WINDOW / 60, 1)
if current_requests >= MAX_REQUESTS:
time_remaining = int(TIME_WINDOW - (now - request_times[ip][0]))
time_remaining_minutes = round(time_remaining / 60, 1)
return {
"status": "Rate limited",
"current_requests": current_requests,
"max_requests": MAX_REQUESTS,
"time_window_minutes": time_window_minutes,
"time_remaining_minutes": time_remaining_minutes
}
else:
return {
"status": "Available",
"current_requests": current_requests,
"max_requests": MAX_REQUESTS,
"time_window_minutes": time_window_minutes,
"remaining_requests": MAX_REQUESTS - current_requests
}
# ----------------- Gradio UI ------------------
with gr.Blocks() as demo:
gr.Markdown("""
<div style='text-align: center; margin-bottom: 24px;'>
<h1 style='font-size:2.2em; margin-bottom: 0.2em;'>🧩 AI Scraper</h1>
<p style='font-size:1.2em; margin-top: 0;'>Extract structured data from web pages with advanced AI models.</p>
<p style='font-size:1em; margin-top: 0.5em;'>For more details and API usage, see the <a href='https://jigsawstack.com/docs/api-reference/ai/scrape' target='_blank'>documentation</a>.</p>
<p style='font-size:0.9em; margin-top: 0.5em; color: #666;'>Rate limit: 1 request per hour per IP address</p>
</div>
""")
with gr.Row():
with gr.Column():
gr.Markdown("#### Input Method")
input_method_scraper = gr.Radio(
choices=["URL", "HTML Content"],
label="Choose Input Method",
value="URL"
)
# Conditional inputs based on selection
url_scraper = gr.Textbox(
label="Page URL",
placeholder="https://example.com/pricing",
info="URL of the page to scrape"
)
html_content = gr.Textbox(
label="HTML Content",
lines=8,
placeholder="<html>...</html>",
visible=False,
info="Raw HTML content to scrape"
)
gr.Markdown("#### Scraping Configuration")
element_prompts = gr.Textbox(
label="Element Prompts (comma-separated)",
lines=3,
placeholder="Plan title, Plan price, Features, Button text",
info="Items to scrape (max 5). E.g., 'Plan price', 'Plan title'"
)
root_selector = gr.Textbox(
label="Root Element Selector",
value="main",
placeholder="main, .container, #content",
info="CSS selector to limit scraping scope (default: main)"
)
page_position = gr.Number(
label="Page Position",
value=1,
minimum=1,
info="For pagination, current page number (min: 1)"
)
with gr.Column():
gr.Markdown("#### Results")
scrape_status = gr.Textbox(
label="Status",
interactive=False,
placeholder="Ready to scrape..."
)
gr.Markdown("#### Extracted Data")
context_output = gr.JSON(
label="Context Data",
visible=False
)
selectors_output = gr.JSON(
label="CSS Selectors Used",
visible=False
)
detailed_data = gr.JSON(
label="Detailed Scrape Data",
visible=False
)
links_data = gr.JSON(
label="Detected Links",
visible=False
)
gr.Markdown("#### Pagination Info")
pagination_info = gr.Textbox(
label="Page Information",
interactive=False,
visible=False
)
scrape_btn = gr.Button("Scrape with AI", variant="primary")
# Function to show/hide input groups based on selection
def update_scraper_input_visibility(method):
if method == "URL":
return gr.Textbox(visible=True), gr.Textbox(visible=False)
elif method == "HTML Content":
return gr.Textbox(visible=False), gr.Textbox(visible=True)
else:
return gr.Textbox(visible=True), gr.Textbox(visible=False)
input_method_scraper.change(
update_scraper_input_visibility,
inputs=input_method_scraper,
outputs=[url_scraper, html_content]
)
scrape_btn.click(
enhanced_ai_scrape,
inputs=[input_method_scraper, url_scraper, html_content, element_prompts, root_selector, page_position],
outputs=[scrape_status, context_output, selectors_output, detailed_data, links_data, pagination_info],
)
demo.launch()
|