File size: 4,808 Bytes
90ab22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# %%

from pathlib import Path

import altair as alt
import numpy as np
import pandas as pd
import solara
import solara.lab
import sympy as sp
from scipy.optimize import root_scalar

# %%
P1, P2, P4, PT, kD1, kD2 = sp.symbols("P_1 P_2 P_4 P_T k_D1 k_D2", positive=True)

# %%
sub_p1_p2 = (P1, sp.solve(kD1 * (P2 / P1**2) - 1, P1)[0])
sub_p2_p4 = (P2, sp.solve(kD2 * (P4 / P2**2) - 1, P2)[0])
sub_p4_p2 = (P4, sp.solve(kD2 * (P4 / P2**2) - 1, P4)[0])

# %%
mass_balance = P1 + 2 * P2 + 4 * P4 - PT

eq_p4 = mass_balance.subs([sub_p1_p2, sub_p2_p4])
eq_p2 = mass_balance.subs([sub_p1_p2, sub_p4_p2])

# %%


def make_df(vmin: float, vmax: float, kD_1_v: float, kD2_v: float) -> pd.DataFrame:
    PT_values = np.logspace(np.log10(vmin), np.log10(vmax), endpoint=True, num=100)

    kd_subs = [(kD1, kD_1_v), (kD2, kD2_v)]

    ld = sp.lambdify([P4, PT], eq_p4.subs(kd_subs))
    P4_values = np.array(
        [root_scalar(ld, bracket=(0, PT_v), args=(PT_v,)).root for PT_v in PT_values]
    )

    ld = sp.lambdify([P2, PT], eq_p2.subs(kd_subs))
    P2_values = np.array(
        [root_scalar(ld, bracket=(0, PT_v), args=(PT_v,)).root for PT_v in PT_values]
    )

    P1_values = PT_values - 2 * P2_values - 4 * P4_values

    columns = {"P1": P1_values, "P2": P2_values, "P4": P4_values}
    total = np.sum(list(columns.values()), axis=0)

    df = pd.DataFrame(dict(PT=PT_values) | {k: v / total for k, v in columns.items()})

    return df


def make_chart(df: pd.DataFrame) -> alt.LayerChart:
    source = df.melt("PT", var_name="species", value_name="y")

    # Create a selection that chooses the nearest point & selects based on x-value
    nearest = alt.selection_point(
        nearest=True, on="pointerover", fields=["PT"], empty=False
    )

    # The basic line
    line = (
        alt.Chart(source)
        .mark_line(interpolate="basis")
        .encode(
            x=alt.X(
                "PT:Q",
                scale=alt.Scale(type="log"),
                title="Total protomer concentration",
            ),
            y=alt.Y("y:Q", title="Fraction of total"),
            color="species:N",
        )
        .properties(width="container")
    )

    # Draw points on the line, and highlight based on selection
    points = (
        line.mark_point()
        .encode(opacity=alt.condition(nearest, alt.value(1), alt.value(0)))
        .properties(width="container")
    )

    # Draw a rule at the location of the selection
    rules = (
        alt.Chart(source)
        .transform_pivot("species", value="y", groupby=["PT"])
        .mark_rule(color="black")
        .encode(
            x="PT:Q",
            opacity=alt.condition(nearest, alt.value(0.3), alt.value(0)),
            tooltip=[
                alt.Tooltip(c, type="quantitative", format=".2f") for c in df.columns
            ],
        )
        .add_params(nearest)
        .properties(width="container")
    )

    # Put the five layers into a chart and bind the data
    chart = (
        alt.layer(line, points, rules)
        .properties(height=300)
        .configure(autosize="fit-x")
    )

    return chart


md = """
This app calculates monomer and dimer concentrations given a total amount of protomer PT and the 
dissociation constant KD. More info on how and why can be found [HuggingFace](https://huggingface.co/spaces/Jhsmit/binding-kinetics) (right click, open new tab).
"""


@solara.component
def Page():
    solara.Style(Path("style.css"))

    dark_effective = solara.lab.use_dark_effective()
    if dark_effective is True:
        alt.themes.enable("dark")

    elif dark_effective is False:
        alt.themes.enable("default")

    kD1 = solara.use_reactive(1.0)
    kD2 = solara.use_reactive(100)

    vmin = solara.use_reactive(1e-3)
    vmax = solara.use_reactive(1e3)

    async def update():
        df = make_df(vmin.value, vmax.value, kD1.value, kD2.value)
        chart = make_chart(df)

        return chart

    task: solara.lab.Task = solara.lab.use_task(
        update, dependencies=[kD1.value, kD2.value, vmin.value, vmax.value]
    )

    solara.Title("Tetramerization Kinetics")

    with solara.Card("Fraction monomer/dimer/tetramer"):
        with solara.GridFixed(columns=2):
            with solara.Tooltip("Dissociation constant monomer/dimer"):
                solara.InputFloat("kD1", value=kD1)
            with solara.Tooltip("Dissociation constant dimer/tetramer"):
                solara.InputFloat("kD2", value=kD2)
            with solara.Tooltip("X axis lower limit"):
                solara.InputFloat("xmin", value=vmin)
            with solara.Tooltip("X axis upper limit"):
                solara.InputFloat("xmax", value=vmax)
        solara.HTML(tag="div", style="height: 10px")

        if task.finished:
            solara.FigureAltair(task.value)


# %%