File size: 25,262 Bytes
19f61e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "c08e675e-437e-4e7d-baee-bd55dda74611",
   "metadata": {},
   "source": [
    "# Abstractive Text Summarization with T5\n",
    "\n",
    "This implementation uses HuggingFace, especially utilizing `AutoModelForSeq2SeqLM` and `AutoTokenizer`. "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a910e4b5-040d-4499-b5c2-32f3e1ac1c34",
   "metadata": {},
   "source": [
    "## Importing libraries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "d22ee5a9-1981-4883-a926-db37905ec8b6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Setup done!\n"
     ]
    }
   ],
   "source": [
    "# Installs\n",
    "!pip install -q evaluate py7zr rouge_score absl-py\n",
    "\n",
    "# Imports here\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "import nltk\n",
    "from nltk.tokenize import sent_tokenize\n",
    "nltk.download(\"punkt\")\n",
    "\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "\n",
    "import datasets\n",
    "import transformers\n",
    "from transformers import (\n",
    "        AutoModelForSeq2SeqLM,\n",
    "        Seq2SeqTrainingArguments,\n",
    "        Seq2SeqTrainer,\n",
    "        AutoTokenizer\n",
    ")\n",
    "import evaluate\n",
    "\n",
    "# Quality of life fixes\n",
    "import warnings\n",
    "warnings.filterwarnings('ignore')\n",
    "from pprint import pprint\n",
    "\n",
    "import os\n",
    "os.environ[\"WANDB_DISABLED\"] = \"true\"\n",
    "\n",
    "from IPython.display import clear_output\n",
    "\n",
    "print(f\"PyTorch version: {torch.__version__}\")\n",
    "print(f\"Transformers version: {transformers.__version__}\")\n",
    "print(f\"Datasets version: {datasets.__version__}\")\n",
    "print(f\"Evaluate version: {evaluate.__version__}\")\n",
    "\n",
    "# Get the samsum dataset\n",
    "samsum = datasets.load_dataset('samsum')\n",
    "clear_output()\n",
    "print(\"Setup done!\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "bafa753c-0746-4ece-b5eb-4511c9138b09",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'4.27.4'"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Verify transformers version\n",
    "transformers.__version__"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f15204cc-0f21-4dc9-a8e4-429c57b227a9",
   "metadata": {},
   "source": [
    "## Playing around with the dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "ba5c1425-a776-4201-97e2-bd420ec112fe",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['id', 'dialogue', 'summary'],\n",
       "        num_rows: 14732\n",
       "    })\n",
       "    test: Dataset({\n",
       "        features: ['id', 'dialogue', 'summary'],\n",
       "        num_rows: 819\n",
       "    })\n",
       "    validation: Dataset({\n",
       "        features: ['id', 'dialogue', 'summary'],\n",
       "        num_rows: 818\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# The samsum dataset shape\n",
    "samsum"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "5d53736c-a8c7-4fe3-b8f1-566c1d99162b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dialogue:\n",
      "Ollie: How is your Hebrew?\r\n",
      "Gabi: Not great. \r\n",
      "Ollie: Could you translate a letter?\r\n",
      "Gabi: From Hebrew to English maybe, the opposite I don’t think so\r\n",
      "Gabi: My writing sucks\r\n",
      "Ollie: Please help me. I don’t have anyone else to ask\r\n",
      "Gabi: Send it to me. I’ll try. \n",
      "\n",
      " -------------------------------------------------- \n",
      "\n",
      "Summary:\n",
      "Gabi knows a bit of Hebrew, though her writing isn't great. She will try to help Ollie translate a letter.\n"
     ]
    }
   ],
   "source": [
    "rand_idx = np.random.randint(0, len(samsum['train']))\n",
    "\n",
    "print(f\"Dialogue:\\n{samsum['train'][rand_idx]['dialogue']}\")\n",
    "print('\\n', '-'*50, '\\n')\n",
    "print(f\"Summary:\\n{samsum['train'][rand_idx]['summary']}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8f95359e-c9c4-4ed5-9130-5e2b4a0a83ad",
   "metadata": {},
   "source": [
    "## Preprocessing data"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "50b572e6-b37a-4688-94c9-9c45a2c67c51",
   "metadata": {},
   "source": [
    " I'm using the T5 Transformers model (Text-to-Text Transfer Transformer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "13634dfe-5b1a-4515-9476-8ac0637d0362",
   "metadata": {},
   "outputs": [],
   "source": [
    "model_ckpt = 't5-small'\n",
    "\n",
    "# TODO: Create the Tokenizer AutoTokenizer pretrained checkpoint\n",
    "tokenizer = AutoTokenizer.from_pretrained('t5-small')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "6b0be9fc-029b-4057-9d08-29235e5b4573",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading cached processed dataset at C:\\Users\\QXLVR\\.cache\\huggingface\\datasets\\samsum\\samsum\\0.0.0\\f1d7c6b7353e6de335d444e424dc002ef70d1277109031327bc9cc6af5d3d46e\\cache-78c13bd5dd6a016a.arrow\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Max source length: 512\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map:   0%|          | 0/15551 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Max target length: 95\n"
     ]
    }
   ],
   "source": [
    "from datasets import concatenate_datasets\n",
    "# Find the max lengths of the source and target samples\n",
    "# The maximum total input sequence length after tokenization. \n",
    "# Sequences that are longer than this will be truncated, sequences shorter are be padded.\n",
    "tokenized_inputs = concatenate_datasets([samsum[\"train\"], samsum[\"test\"]]).map(lambda x: tokenizer(x[\"dialogue\"], truncation=True), batched=True, remove_columns=[\"dialogue\", \"summary\"])\n",
    "max_source_length = max([len(x) for x in tokenized_inputs[\"input_ids\"]])\n",
    "print(f\"Max source length: {max_source_length}\")\n",
    "\n",
    "# The maximum total sequence length for target text after tokenization. \n",
    "# Sequences that are longer than this will be truncated, sequences shorter are be padded.\n",
    "tokenized_targets = concatenate_datasets([samsum[\"train\"], samsum[\"test\"]]).map(lambda x: tokenizer(x[\"summary\"], truncation=True), batched=True, remove_columns=[\"dialogue\", \"summary\"])\n",
    "max_target_length = max([len(x) for x in tokenized_targets[\"input_ids\"]])\n",
    "print(f\"Max target length: {max_target_length}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "c43b0864-8b92-4cb9-b159-bc8ec15bcc2d",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading cached processed dataset at C:\\Users\\QXLVR\\.cache\\huggingface\\datasets\\samsum\\samsum\\0.0.0\\f1d7c6b7353e6de335d444e424dc002ef70d1277109031327bc9cc6af5d3d46e\\cache-073bbcc8f496f07c.arrow\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map:   0%|          | 0/819 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading cached processed dataset at C:\\Users\\QXLVR\\.cache\\huggingface\\datasets\\samsum\\samsum\\0.0.0\\f1d7c6b7353e6de335d444e424dc002ef70d1277109031327bc9cc6af5d3d46e\\cache-a43b31cabc78c9c3.arrow\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Keys of tokenized dataset: ['input_ids', 'attention_mask', 'labels']\n"
     ]
    }
   ],
   "source": [
    "def preprocess_function(\n",
    "    sample, \n",
    "    padding=\"max_length\", \n",
    "    max_source_length=max_source_length,\n",
    "    max_target_length=max_target_length\n",
    "):\n",
    "    '''\n",
    "    A preprocessing function that will be applied across the dataset.\n",
    "    The inputs and targets will be tokenized and padded/truncated to the max lengths.\n",
    "\n",
    "    Args:\n",
    "        sample: A dictionary containing the source and target texts (keys are \"dialogue\" and \"summary\") in a list.\n",
    "        padding: Whether to pad the inputs and targets to the max lengths.\n",
    "        max_source_length: The maximum length of the source text.\n",
    "        max_target_length: The maximum length of the target text.\n",
    "    '''\n",
    "    # Add prefix to the input for t5\n",
    "    inputs = ['summarize: ' + s for s in sample['dialogue']]\n",
    "   \n",
    "    # Tokenize inputs, specifying the padding, truncation and max_length\n",
    "    model_inputs = tokenizer(inputs, max_length=max_source_length, padding=padding, truncation=True)\n",
    "\n",
    "    # Tokenize targets with the `text_target` keyword argument\n",
    "    labels = tokenizer(text_target=sample['summary'], max_length=max_target_length, padding=padding, truncation=True)\n",
    "\n",
    "    # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore padding in the loss\n",
    "    if padding == \"max_length\":\n",
    "        labels[\"input_ids\"] = [\n",
    "            [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels[\"input_ids\"]\n",
    "        ]\n",
    "\n",
    "    # Format and return\n",
    "    model_inputs[\"labels\"] = labels[\"input_ids\"]\n",
    "    return model_inputs\n",
    "\n",
    "# Map this preprocessing function to our datasets using .map on the samsum variable\n",
    "tokenized_dataset = samsum.map(preprocess_function, batched=True, remove_columns=[\"dialogue\", \"summary\", \"id\"])\n",
    "print(f\"Keys of tokenized dataset: {list(tokenized_dataset['train'].features)}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "3becd236-0097-4ae5-9bd6-a91ed332e748",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['input_ids', 'attention_mask', 'labels'],\n",
       "        num_rows: 14732\n",
       "    })\n",
       "    test: Dataset({\n",
       "        features: ['input_ids', 'attention_mask', 'labels'],\n",
       "        num_rows: 819\n",
       "    })\n",
       "    validation: Dataset({\n",
       "        features: ['input_ids', 'attention_mask', 'labels'],\n",
       "        num_rows: 818\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tokenized_dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "20110839-bb02-4d64-8de7-53253e3f7fe0",
   "metadata": {},
   "outputs": [],
   "source": [
    "metric = evaluate.load(\"rouge\")\n",
    "clear_output()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "ca00f91d-8453-4496-a064-525ef437198f",
   "metadata": {},
   "outputs": [],
   "source": [
    "def postprocess_text(preds, labels):\n",
    "    '''\n",
    "    A simple post-processing function to clean up the predictions and labels\n",
    "\n",
    "    Args:\n",
    "        preds: List[str] of predictions\n",
    "        labels: List[str] of labels\n",
    "    '''\n",
    "    \n",
    "    # strip whitespace on all sentences in preds and labels\n",
    "    preds = [p.strip(' ') for p in preds]\n",
    "    labels = [l.strip(' ') for l in preds]\n",
    "    \n",
    "    # rougeLSum expects newline after each sentence\n",
    "    preds = [\"\\n\".join(sent_tokenize(pred)) for pred in preds]\n",
    "    labels = [\"\\n\".join(sent_tokenize(label)) for label in labels]\n",
    "\n",
    "    return preds, labels\n",
    "\n",
    "def compute_metrics(eval_preds):\n",
    "    \n",
    "    # Fetch the predictions and labels\n",
    "    preds, labels = eval_preds\n",
    "    if isinstance(preds, tuple):\n",
    "        preds = preds[0]\n",
    "    \n",
    "    # Decode the predictions back to text\n",
    "    decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)\n",
    "    \n",
    "    # Replace -100 in the labels as we can't decode them.\n",
    "    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)\n",
    "    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)\n",
    "\n",
    "    # Some simple post-processing for ROUGE\n",
    "    decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)\n",
    "\n",
    "    # Compute ROUGE on the decoded predictions and the decoder labels\n",
    "    result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)\n",
    "    \n",
    "    result = {k: round(v * 100, 4) for k, v in result.items()}\n",
    "    prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]\n",
    "    result[\"gen_len\"] = np.mean(prediction_lens)\n",
    "    return result"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7b244846-2ebf-4019-a577-3ef07e350f7c",
   "metadata": {},
   "source": [
    "## Creating the model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "49c1ac7c-6400-4a67-b32b-5bdc7330d790",
   "metadata": {},
   "outputs": [],
   "source": [
    "# the AutoModelForSeq2SeqLM class and use the model_ckpt variable)\n",
    "model = AutoModelForSeq2SeqLM.from_pretrained(model_ckpt)\n",
    "\n",
    "clear_output()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "e027b290-c04f-4241-b238-41787f32abe0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# we want to ignore tokenizer pad token in the loss\n",
    "label_pad_token_id = -100\n",
    "\n",
    "# Data Collator, specifying the tokenizer, model, and label_pad_token_id\n",
    "# pad_to_multiple_of=8 to speed up training\n",
    "data_collator = transformers.DataCollatorForSeq2Seq(\n",
    "    tokenizer,\n",
    "    model=model,\n",
    "    label_pad_token_id=label_pad_token_id,\n",
    "    pad_to_multiple_of=8\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "0d20ee86-ac8c-4ae7-9e7c-92283e879e00",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the --report_to flag to control the integrations used for logging result (for instance --report_to none).\n"
     ]
    }
   ],
   "source": [
    "import logging\n",
    "logging.getLogger(\"transformers\").setLevel(logging.WARNING)\n",
    "\n",
    "\n",
    "# Define training hyperparameters in Seq2SeqTrainingArguments\n",
    "training_args = Seq2SeqTrainingArguments(\n",
    "    output_dir=\"./t5_samsum\", # the output directory\n",
    "    logging_strategy=\"epoch\",\n",
    "    save_strategy=\"epoch\",\n",
    "    evaluation_strategy=\"epoch\",\n",
    "    learning_rate=2e-5,\n",
    "    num_train_epochs=5,\n",
    "    predict_with_generate=True,\n",
    "    per_device_train_batch_size=8,\n",
    "    per_device_eval_batch_size=8,\n",
    "    weight_decay=0.01,\n",
    "    load_best_model_at_end=True,\n",
    "    logging_steps=50,\n",
    "    logging_first_step=False,\n",
    "    fp16=False\n",
    ")\n",
    "\n",
    "# index into the tokenized_dataset variable to get the training and validation data\n",
    "training_data = tokenized_dataset['train']\n",
    "eval_data = tokenized_dataset['validation']\n",
    "\n",
    "# Create the Trainer for the model\n",
    "trainer = Seq2SeqTrainer(\n",
    "    model=model,    # the model to be trained\n",
    "    args=training_args, # training arguments\n",
    "    train_dataset=training_data, # the training dataset\n",
    "    eval_dataset=eval_data, # the validation dataset\n",
    "    tokenizer=tokenizer, # the tokenizer we used to tokenize our data\n",
    "    compute_metrics=compute_metrics, # the function we defined above to compute metrics\n",
    "    data_collator=data_collator # the data collator we defined above\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "a3b5f21d-b4cb-4f8b-a7fc-cf132ef43c65",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "TrainOutput(global_step=9210, training_loss=1.9861197174436753, metrics={'train_runtime': 3551.1547, 'train_samples_per_second': 20.743, 'train_steps_per_second': 2.594, 'total_flos': 9969277096427520.0, 'train_loss': 1.9861197174436753, 'epoch': 5.0})\n"
     ]
    }
   ],
   "source": [
    "# Train the model (this will take a while!)\n",
    "results = trainer.train()\n",
    "clear_output()\n",
    "pprint(results)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ddf8c308",
   "metadata": {},
   "source": [
    "## Evaluating the model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "03e94a7f-2d26-48eb-ab17-cb58b14b93f3",
   "metadata": {},
   "outputs": [],
   "source": [
    "res = trainer.evaluate()\n",
    "clear_output()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "23675ccb-071c-4a4f-8e42-1a71dc628a5c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>eval_loss</th>\n",
       "      <th>eval_rouge1</th>\n",
       "      <th>eval_rouge2</th>\n",
       "      <th>eval_rougeL</th>\n",
       "      <th>eval_rougeLsum</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>t5-small</th>\n",
       "      <td>1.764253</td>\n",
       "      <td>100.0</td>\n",
       "      <td>100.0</td>\n",
       "      <td>100.0</td>\n",
       "      <td>100.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          eval_loss  eval_rouge1  eval_rouge2  eval_rougeL  eval_rougeLsum\n",
       "t5-small   1.764253        100.0        100.0        100.0           100.0"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "cols  = [\"eval_loss\", \"eval_rouge1\", \"eval_rouge2\", \"eval_rougeL\", \"eval_rougeLsum\"]\n",
    "filtered_scores = dict((x , res[x]) for x in cols)\n",
    "pd.DataFrame([filtered_scores], index=[model_ckpt])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "7c59a731",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import pipeline\n",
    "\n",
    "summarizer_pipeline = pipeline(\"summarization\",\n",
    "                              model=model,\n",
    "                              tokenizer=tokenizer,\n",
    "                              device=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "5138f2bc",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dialogue: Adelina: Hi handsome. Where you you come from?\r\n",
      "Cyprien: What do you mean?\r\n",
      "Adelina: What do you mean, \"what do you mean\"? It's a simple question, where do you come from?\r\n",
      "Cyprien: Well I was born in Jarrow, live in London now, so you could say I came from either of those places\r\n",
      "Cyprien: I was educated in Loughborouogh, so in a sense I came from there.\r\n",
      "Adelina: OK. \r\n",
      "Cyprien: In another sense I come from my mother's vagina, but I dare say everyone can say that.\r\n",
      "Adelina: Are you all right?\r\n",
      "Cyprien: IN another sense I come from the atoms in the air that I breath or the food I eat, which comes to me from many places, so all I can say is \"I come from Planet Earth\".\r\n",
      "Adelina: OK, bye. If you're gonna be a dick...\r\n",
      "Cyprien: Wait, what you got against earthlings?\n",
      "-------------------------\n",
      "True Summary: Cyprien irritates Adelina by giving too many responses.\n",
      "-------------------------\n",
      "Model Summary: Cyprien came from Jarrow, live in London. She came from Loughborouogh, and came from her mother's vagina.\n",
      "-------------------------\n"
     ]
    }
   ],
   "source": [
    "rand_idx = np.random.randint(low=0, high=len(samsum[\"test\"]))\n",
    "sample = samsum[\"test\"][rand_idx]\n",
    "\n",
    "dialog = sample[\"dialogue\"]\n",
    "true_summary = sample[\"summary\"]\n",
    "\n",
    "model_summary = summarizer_pipeline(dialog)\n",
    "clear_output()\n",
    "\n",
    "print(f\"Dialogue: {dialog}\")\n",
    "print(\"-\"*25)\n",
    "print(f\"True Summary: {true_summary}\")\n",
    "print(\"-\"*25)\n",
    "print(f\"Model Summary: {model_summary[0]['summary_text']}\")\n",
    "print(\"-\"*25)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "f051655f",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Your max_length is set to 200, but you input_length is only 94. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=47)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original Text:\n",
      "\n",
      "Andy: I need you to come in to work on the weekend.\n",
      "David: Why boss? I have plans to go on a concert I might not be able to come on the weekend.\n",
      "Andy: It's important we need to get our paperwork all sorted out for this year. Corporate needs it.\n",
      "David: But I already made plans and this is news to me on very short notice.\n",
      "Andy: Be there or you'r fired\n",
      "\n",
      "\n",
      " -------------------------------------------------- \n",
      "\n",
      "Generated Summary: \n",
      "[{'summary_text': 'David has plans to go on a concert. Andy needs to get his paperwork all sorted out for this year. David already made plans.'}]\n"
     ]
    }
   ],
   "source": [
    "def create_summary(input_text, model_pipeline=summarizer_pipeline):\n",
    "    summary = model_pipeline(input_text)\n",
    "    return summary\n",
    "\n",
    "text = '''\n",
    "Andy: I need you to come in to work on the weekend.\n",
    "David: Why boss? I have plans to go on a concert I might not be able to come on the weekend.\n",
    "Andy: It's important we need to get our paperwork all sorted out for this year. Corporate needs it.\n",
    "David: But I already made plans and this is news to me on very short notice.\n",
    "Andy: Be there or you'r fired\n",
    "'''\n",
    "\n",
    "print(f\"Original Text:\\n{text}\")\n",
    "print('\\n', '-'*50, '\\n')\n",
    "\n",
    "summary = create_summary(text)\n",
    "\n",
    "print(f\"Generated Summary: \\n{summary}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ad5d29a0",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}