File size: 10,023 Bytes
5434c4b a6b5a66 216d66f a6b5a66 216d66f 5434c4b a6b5a66 d3a24ff 216d66f 5434c4b a6b5a66 d3a24ff 5f3a4af 303303b a6b5a66 303303b 86f1b98 a6b5a66 303303b 86f1b98 a6b5a66 303303b 86f1b98 a6b5a66 303303b 216d66f 303303b a6b5a66 b6ae739 5434c4b a6b5a66 b6ae739 216d66f a6b5a66 216d66f d3a24ff a6b5a66 d3a24ff a6b5a66 d3a24ff a6b5a66 d3a24ff a6b5a66 d3a24ff a6b5a66 d3a24ff a6b5a66 d3a24ff a6b5a66 d3a24ff a6b5a66 d3a24ff 216d66f a6b5a66 216d66f a6b5a66 216d66f a6b5a66 216d66f d3a24ff 216d66f a6b5a66 216d66f a6b5a66 216d66f a6b5a66 d3a24ff 216d66f 5434c4b a6b5a66 642fae1 a6b5a66 642fae1 216d66f 0b259d2 a6b5a66 0b259d2 a6b5a66 216d66f 0b259d2 a6b5a66 0c136d8 0b259d2 216d66f a6b5a66 0b259d2 216d66f 0b259d2 a6b5a66 0c136d8 216d66f 5f3a4af a6b5a66 216d66f a6b5a66 216d66f a6b5a66 216d66f d3a24ff 216d66f d3a24ff a01d3ba a6b5a66 5434c4b a6b5a66 216d66f a6b5a66 216d66f a6b5a66 216d66f 5434c4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import gradio as gr
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from evaluate.utils import parse_readme
from scipy.stats import gaussian_kde
import generate_annotated_diffs
from api_wrappers import hf_data_loader
from generation_steps.metrics_analysis import edit_distance_fn
colors = {
"Expert-labeled": "#C19C0B",
"Synthetic Backward": "#913632",
"Synthetic Forward": "#58136a",
"Full": "#000000",
}
df_related = generate_annotated_diffs.data_with_annotated_diffs()
def golden():
return df_related.loc[(df_related["G_type"] == "initial") & (df_related["E_type"] == "expert_labeled")].reset_index(
drop=True
)
def backward():
return df_related.loc[
(df_related["G_type"] == "synthetic_backward") & (df_related["E_type"] == "expert_labeled")
].reset_index(drop=True)
def forward():
return df_related.loc[
(df_related["G_type"] == "initial") & (df_related["E_type"] == "synthetic_forward")
].reset_index(drop=True)
def forward_from_backward():
return df_related.loc[
(df_related.G_type == "synthetic_backward")
& (df_related.E_type.isin(["synthetic_forward", "synthetic_forward_from_backward"]))
].reset_index(drop=True)
n_diffs_manual = len(golden())
n_diffs_synthetic_backward = len(backward())
n_diffs_synthetic_forward = len(forward())
n_diffs_synthetic_forward_backward = len(forward_from_backward())
def update_dataset_view(diff_idx, df):
diff_idx -= 1
return (
df.iloc[diff_idx]["annotated_diff"],
df.iloc[diff_idx]["commit_msg_start"] if "commit_msg_start" in df.columns else df.iloc[diff_idx]["G_text"],
df.iloc[diff_idx]["commit_msg_end"] if "commit_msg_end" in df.columns else df.iloc[diff_idx]["E_text"],
f"https://github.com/{df.iloc[diff_idx]['repo']}/commit/{df.iloc[diff_idx]['hash']}",
)
def update_dataset_view_manual(diff_idx):
return update_dataset_view(diff_idx, golden())
def update_dataset_view_synthetic_backward(diff_idx):
return update_dataset_view(diff_idx, backward())
def update_dataset_view_synthetic_forward(diff_idx):
return update_dataset_view(diff_idx, forward())
def update_dataset_view_synthetic_forward_backward(diff_idx):
return update_dataset_view(diff_idx, forward_from_backward())
def number_of_pairs_plot():
related_plot_dict = {
"Full": df_related,
"Synthetic Backward": backward(),
"Synthetic Forward": pd.concat([forward(), forward_from_backward()], axis=0, ignore_index=True),
"Expert-labeled": golden(),
}
df_unrelated = hf_data_loader.load_synthetic_as_pandas()
df_unrelated = df_unrelated.loc[~df_unrelated.is_related].copy()
unrelated_plot_dict = {
"Full": df_unrelated,
"Synthetic Backward": df_unrelated.loc[
(df_unrelated["G_type"] == "synthetic_backward")
& (~df_unrelated.E_type.isin(["synthetic_forward", "synthetic_forward_from_backward"]))
],
"Synthetic Forward": df_unrelated.loc[
((df_unrelated["G_type"] == "initial") & (df_unrelated["E_type"] == "synthetic_forward"))
| (
(df_unrelated["G_type"] == "synthetic_backward")
& (df_unrelated["E_type"].isin(["synthetic_forward", "synthetic_forward_from_backward"]))
)
],
"Expert-labeled": df_unrelated.loc[
(df_unrelated.G_type == "initial") & (df_unrelated.E_type == "expert_labeled")
],
}
traces = []
for split in related_plot_dict.keys():
related_count = len(related_plot_dict[split])
unrelated_count = len(unrelated_plot_dict[split])
traces.append(
go.Bar(
name=f"{split} - Related pairs",
x=[split],
y=[related_count],
marker=dict(
color=colors[split],
),
)
)
traces.append(
go.Bar(
name=f"{split} - Conditionally independent pairs",
x=[split],
y=[unrelated_count],
marker=dict(
color=colors[split],
pattern=dict(
shape="/", # Crosses
fillmode="overlay",
solidity=0.5,
),
),
)
)
fig = go.Figure(data=traces)
fig.update_layout(
barmode="stack",
bargap=0.2,
xaxis=dict(title="Split", showgrid=True, gridcolor="lightgrey"),
yaxis=dict(title="Number of Examples", showgrid=True, gridcolor="lightgrey"),
legend=dict(title="Pair Type", orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
width=1100,
)
return fig
def edit_distance_plot():
df_edit_distance = {
"Full": [edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in df_related.iterrows()],
"Synthetic Backward": [
edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in backward().iterrows()
],
"Synthetic Forward": [
edit_distance_fn(pred=row["G_text"], ref=row["E_text"])
for _, row in pd.concat([forward(), forward_from_backward()], axis=0, ignore_index=True).iterrows()
],
"Expert-labeled": [edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in golden().iterrows()],
}
traces = []
for key in df_edit_distance:
kde_x = np.linspace(0, 1200, 1000)
kde = gaussian_kde(df_edit_distance[key])
kde_line = go.Scatter(x=kde_x, y=kde(kde_x), mode="lines", name=key, line=dict(color=colors[key], width=5))
traces.append(kde_line)
fig = go.Figure(data=traces)
fig.update_layout(
bargap=0.1,
xaxis=dict(title=dict(text="Edit Distance"), range=[0, 1200], showgrid=True, gridcolor="lightgrey"),
yaxis=dict(
title=dict(text="Probability Density"),
range=[0, 0.004],
showgrid=True,
gridcolor="lightgrey",
tickvals=[0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004],
tickformat=".4f",
),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
width=1100,
)
return fig
force_light_theme_js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
if __name__ == "__main__":
with gr.Blocks(theme=gr.themes.Soft(), js=force_light_theme_js_func) as application:
gr.Markdown(parse_readme("README.md"))
def dataset_view_tab(n_items):
slider = gr.Slider(minimum=1, maximum=n_items, step=1, value=1, label=f"Sample number (total: {n_items})")
diff_view = gr.Highlightedtext(combine_adjacent=True, color_map={"+": "green", "-": "red"})
start_view = gr.Textbox(interactive=False, label="Initial message G", container=True)
end_view = gr.Textbox(interactive=False, label="Edited message E", container=True)
link_view = gr.Markdown()
view = [diff_view, start_view, end_view, link_view]
return slider, view
with gr.Tab("Examples Exploration"):
with gr.Tab("Manual"):
slider_manual, view_manual = dataset_view_tab(n_diffs_manual)
slider_manual.change(update_dataset_view_manual, inputs=slider_manual, outputs=view_manual)
with gr.Tab("Synthetic Backward"):
slider_synthetic_backward, view_synthetic_backward = dataset_view_tab(n_diffs_synthetic_backward)
slider_synthetic_backward.change(
update_dataset_view_synthetic_backward,
inputs=slider_synthetic_backward,
outputs=view_synthetic_backward,
)
with gr.Tab("Synthetic Forward (from initial)"):
slider_synthetic_forward, view_synthetic_forward = dataset_view_tab(n_diffs_synthetic_forward)
slider_synthetic_forward.change(
update_dataset_view_synthetic_forward,
inputs=slider_synthetic_forward,
outputs=view_synthetic_forward,
)
with gr.Tab("Synthetic Forward (from backward)"):
slider_synthetic_forward_backward, view_synthetic_forward_backward = dataset_view_tab(
n_diffs_synthetic_forward_backward
)
slider_synthetic_forward_backward.change(
update_dataset_view_synthetic_forward_backward,
inputs=slider_synthetic_forward_backward,
outputs=view_synthetic_forward_backward,
)
with gr.Tab("Dataset Statistics"):
gr.Markdown("## Number of examples per split")
number_of_pairs_gr_plot = gr.Plot(number_of_pairs_plot, label=None)
gr.Markdown("## Edit Distance Distribution (w/o PyCharm Logs)")
edit_distance_gr_plot = gr.Plot(edit_distance_plot(), label=None)
application.load(update_dataset_view_manual, inputs=slider_manual, outputs=view_manual)
application.load(
update_dataset_view_synthetic_backward, inputs=slider_synthetic_backward, outputs=view_synthetic_backward
)
application.load(
update_dataset_view_synthetic_forward, inputs=slider_synthetic_forward, outputs=view_synthetic_forward
)
application.load(
update_dataset_view_synthetic_forward_backward,
inputs=slider_synthetic_forward_backward,
outputs=view_synthetic_forward_backward,
)
application.launch()
|