File size: 9,600 Bytes
bb44b5c e684577 a3d6ea6 e684577 a3d6ea6 e684577 a3d6ea6 e684577 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c a3d6ea6 bb44b5c e684577 a3d6ea6 bb44b5c a3d6ea6 bb44b5c e684577 a3d6ea6 bb44b5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
{
"cells": [
{
"metadata": {},
"cell_type": "markdown",
"source": [
"### How to run\n",
"\n",
"* Install libraries using the cell below (for grazie-api-gateway-client you will have to add a custom JB repository)\n",
"* Put the production prompt to file `data/prod_prompt.txt`\n",
"* Environment variables:\n",
" - `GRAZIE_API_JWT_TOKEN` -- JWT token for grazie (check `api_wrappers/grazie_wrapper.py` to adjust the client initialization if necessary)\n",
" - `HF_TOKEN` -- should _not_ be required; however, if it is, set it to a valid Hugging Face token"
],
"id": "77d51d55b41735cf"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-06-20T16:09:07.968406Z",
"start_time": "2024-06-20T16:09:07.955405Z"
}
},
"cell_type": "code",
"source": [
"# !pip install grazie-api-gateway-client\n",
"# !pip install tqdm\n",
"# !pip install pandas\n",
"# !pip install datasets"
],
"id": "91fa273e8987f6f6",
"outputs": [],
"execution_count": 1
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-06-20T16:09:10.353479Z",
"start_time": "2024-06-20T16:09:07.970405Z"
}
},
"cell_type": "code",
"source": [
"from api_wrappers.grazie_wrapper import generate_for_prompt\n",
"from api_wrappers.hf_data_loader import load_full_commit_with_predictions_as_pandas\n",
"from tqdm import tqdm\n",
"\n",
"tqdm.pandas()"
],
"id": "ce11a4c781c152e",
"outputs": [],
"execution_count": 2
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-06-20T16:09:10.368996Z",
"start_time": "2024-06-20T16:09:10.354434Z"
}
},
"cell_type": "code",
"source": [
"with open(\"data/prod_prompt.txt\") as f:\n",
"\tPROD_PROMPT = f.read().strip()\n",
"\n",
"def prod_prompt(diff):\n",
"\treturn PROD_PROMPT.replace(\"$diff\", diff).replace(\"$text\", \"\")\n",
"\n",
"def generate_commit_message_prod(diff):\n",
"\treturn generate_for_prompt(prod_prompt(diff))"
],
"id": "84a769c8765a7b64",
"outputs": [],
"execution_count": 3
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-06-20T16:09:10.384590Z",
"start_time": "2024-06-20T16:09:10.371410Z"
}
},
"cell_type": "code",
"source": "generate_commit_message_prod(\"TEST\")",
"id": "af2f20def94b0490",
"outputs": [
{
"data": {
"text/plain": [
"\"Certainly! I'll need to see the specific code differences (diffs) you would like to have summarized into a commit message. Please provide the diffs so I can assist you properly.\""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 4
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-06-20T16:09:22.224167Z",
"start_time": "2024-06-20T16:09:10.388409Z"
}
},
"cell_type": "code",
"source": [
"DATA = load_full_commit_with_predictions_as_pandas()[[\"mods\", \"prediction\"]].rename(columns={\"mods\": \"diff\", \"prediction\": \"prediction_current\"})\n",
"DATA.head()"
],
"id": "a49cabf576c9d692",
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using the latest cached version of the dataset since JetBrains-Research/lca-commit-message-generation couldn't be found on the Hugging Face Hub\n",
"Found the latest cached dataset configuration 'commitchronicle-py-long' at cache\\JetBrains-Research___lca-commit-message-generation\\commitchronicle-py-long\\0.0.0\\58dcef83a63cccebacd3e786afd73181cc9175e5 (last modified on Sun Apr 7 11:16:22 2024).\n",
"Using the latest cached version of the dataset since JetBrains-Research/lca-results couldn't be found on the Hugging Face Hub\n",
"Found the latest cached dataset configuration 'cmg_gpt_4_0613' at cache\\JetBrains-Research___lca-results\\cmg_gpt_4_0613\\0.0.0\\4b56bbf7243da371b3e0a42a0c9db1f37af98c39 (last modified on Fri May 31 16:00:33 2024).\n"
]
},
{
"data": {
"text/plain": [
" diff \\\n",
"0 [{'change_type': 'MODIFY', 'old_path': 'cupy/c... \n",
"1 [{'change_type': 'MODIFY', 'old_path': 'tests/... \n",
"2 [{'change_type': 'MODIFY', 'old_path': 'numpy/... \n",
"3 [{'change_type': 'MODIFY', 'old_path': 'numpy/... \n",
"4 [{'change_type': 'MODIFY', 'old_path': 'numpy/... \n",
"\n",
" prediction_current \n",
"0 Extend memory management to consider CUDA stre... \n",
"1 Implement utility methods for parameterized te... \n",
"2 Update numpy function imports to use numpy as ... \n",
"3 Switch to using internal implementation method... \n",
"4 Add type hints and refine array API wrappers\\n... "
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>diff</th>\n",
" <th>prediction_current</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>[{'change_type': 'MODIFY', 'old_path': 'cupy/c...</td>\n",
" <td>Extend memory management to consider CUDA stre...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>[{'change_type': 'MODIFY', 'old_path': 'tests/...</td>\n",
" <td>Implement utility methods for parameterized te...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>[{'change_type': 'MODIFY', 'old_path': 'numpy/...</td>\n",
" <td>Update numpy function imports to use numpy as ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>[{'change_type': 'MODIFY', 'old_path': 'numpy/...</td>\n",
" <td>Switch to using internal implementation method...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>[{'change_type': 'MODIFY', 'old_path': 'numpy/...</td>\n",
" <td>Add type hints and refine array API wrappers\\n...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 5
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-06-20T16:21:20.410778Z",
"start_time": "2024-06-20T16:09:22.227258Z"
}
},
"cell_type": "code",
"source": "DATA[\"prediction_prod\"] = DATA.progress_apply(lambda row: generate_commit_message_prod(str(row[\"diff\"])), axis=1)",
"id": "9ded493e087f991d",
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 163/163 [11:58<00:00, 4.41s/it]\n"
]
}
],
"execution_count": 6
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-06-20T16:21:20.426781Z",
"start_time": "2024-06-20T16:21:20.414781Z"
}
},
"cell_type": "code",
"source": [
"current_avg_length = DATA[\"prediction_current\"].str.len().mean()\n",
"print(f\"Current average length: {current_avg_length}\")"
],
"id": "ad38c2dce387f26d",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Current average length: 625.5644171779142\n"
]
}
],
"execution_count": 7
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-06-20T16:21:20.442017Z",
"start_time": "2024-06-20T16:21:20.429913Z"
}
},
"cell_type": "code",
"source": [
"prod_avg_length = DATA[\"prediction_prod\"].str.len().mean()\n",
"print(f\"Prod average length: {prod_avg_length}\")"
],
"id": "ec8b4412410794a4",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prod average length: 352.88957055214723\n"
]
}
],
"execution_count": 8
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-06-20T16:21:20.457884Z",
"start_time": "2024-06-20T16:21:20.444852Z"
}
},
"cell_type": "code",
"source": "print(f\"Length ratio (current / prod): {current_avg_length / prod_avg_length})\")",
"id": "10f087784896eca3",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Length ratio (current / prod): 1.772691712591923)\n"
]
}
],
"execution_count": 9
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|