File size: 1,242 Bytes
8c348c5
6307b4f
8c348c5
 
6307b4f
 
 
 
8c348c5
6307b4f
 
 
8c348c5
 
6307b4f
 
 
8c348c5
6307b4f
 
8c348c5
 
6307b4f
 
 
8c348c5
6307b4f
 
8c348c5
 
6307b4f
 
 
8c348c5
6307b4f
 
 
8c348c5
 
6307b4f
 
ff1254a
6307b4f
ff1254a
6307b4f
ff1254a
6307b4f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
from abc import abstractmethod, ABC


class Activation(ABC):
    @abstractmethod
    def forward(self, X: np.ndarray) -> np.ndarray:
        pass

    @abstractmethod
    def backward(self, X: np.ndarray) -> np.ndarray:
        pass


class Relu(Activation):
    def forward(self, X: np.ndarray) -> np.ndarray:
        return np.maximum(0, X)

    def backward(self, X: np.ndarray) -> np.ndarray:
        return np.where(X > 0, 1, 0)


class TanH(Activation):
    def forward(self, X: np.ndarray) -> np.ndarray:
        return np.tanh(X)

    def backward(self, X: np.ndarray) -> np.ndarray:
        return 1 - self.forward(X) ** 2


class Sigmoid(Activation):
    def forward(self, X: np.ndarray) -> np.ndarray:
        return 1.0 / (1.0 + np.exp(-X))

    def backward(self, X: np.ndarray) -> np.ndarray:
        s = self.forward(X)
        return s - (1 - s)


class SoftMax(Activation):
    def forward(self, X: np.ndarray) -> np.ndarray:
        ax = 1 if X.ndim > 1 else 0
        exps = np.exp(
            X - np.max(X, axis=ax, keepdims=True)
        )  # Avoid numerical instability
        return exps / np.sum(exps, axis=ax, keepdims=True)

    def backward(self, X: np.ndarray) -> np.ndarray:
        return X