Spaces:
Running
Running
File size: 21,883 Bytes
aeb6d58 cc8a66b f276a79 6d540bf ccde434 aac9ef0 ccde434 aeb6d58 2297683 aeb6d58 4161029 aeb6d58 86e1422 aeb6d58 2297683 aeb6d58 86e1422 aeb6d58 2297683 aeb6d58 86e1422 5cd2be1 aeb6d58 cc8a66b aeb6d58 cc8a66b aeb6d58 cc8a66b aeb6d58 cc8a66b 54696b7 cc8a66b 5cd2be1 cc8a66b ed92462 5cd2be1 ed92462 5cd2be1 ed92462 5cd2be1 cc8a66b aeb6d58 aac9ef0 aeb6d58 aac9ef0 ccde434 aac9ef0 ccde434 aac9ef0 ccde434 aeb6d58 ccde434 aeb6d58 7cf92c8 aeb6d58 f276a79 6d540bf f276a79 848ffbd f276a79 848ffbd f276a79 54a0a2e f276a79 6d540bf 54a0a2e 848ffbd 16dece6 848ffbd 6d540bf 848ffbd 6d540bf 848ffbd 6d540bf 848ffbd cc491fa 848ffbd 6d540bf 848ffbd 6d540bf 848ffbd 6d540bf f276a79 848ffbd f276a79 aeb6d58 f276a79 aeb6d58 cc8a66b aeb6d58 cc8a66b aeb6d58 cc8a66b c96965d aeb6d58 c96965d aeb6d58 f276a79 aeb6d58 cc8a66b aeb6d58 12d9ced 618188b f276a79 618188b aeb6d58 cc8a66b aeb6d58 cc8a66b aeb6d58 cc8a66b aeb6d58 cc8a66b aeb6d58 cc8a66b aeb6d58 f276a79 aeb6d58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
import pandas as pd
import gradio as gr
import os
import re
import requests
from dotenv import load_dotenv
from matplotlib.colors import LinearSegmentedColormap
import plotly.express as px
import plotly.graph_objects as go
from sklearn.linear_model import LinearRegression
import numpy as np
from huggingface_hub import HfApi
from huggingface_hub.hf_api import HTTPError
from huggingface_hub.utils._errors import GatedRepoError
load_dotenv()
webhook_url = os.environ.get("WEBHOOK_URL")
file_name_list = [
'9b',
'7b',
'3b',
'1b5',
]
sheet_name_list = [
'cr',
'bpc',
'bpb',
]
metric_list = [
'Compression Rate (%)',
'Bits Per Character (BPC)',
'Bits Per Byte (BPB)',
]
model_size_list = [
'~9B',
'~7B',
'~3B',
'~1.5B',
]
metric_to_sheet = {
'Compression Rate (%)': 'cr',
'Bits Per Character (BPC)': 'bpc',
'Bits Per Byte (BPB)': 'bpb',
}
model_size_to_file_name = {
'~9B': '9b',
'~7B': '7b',
'~3B': '3b',
'~1.5B': '1b5',
}
css = """
.gr-dataframe table {
table-layout: fixed;
width: 100%; /* Ensures the table fills its container */
}
.gr-dataframe th, .gr-dataframe td {
width: 100px; /* Set the exact width of each cell */
overflow: hidden; /* Ensures the content doesn't overflow */
text-overflow: ellipsis; /* Adds an ellipsis (...) if the text overflows */
white-space: nowrap; /* Keeps the content on a single line */
}
"""
about_md = """
# Uncheatable Eval
GitHub page: [https://github.com/Jellyfish042/uncheatable_eval](https://github.com/Jellyfish042/uncheatable_eval)
## Introduction
Traditional LLM benchmarks are easily compromised by unintentional or intentional data leakage, making many benchmarks unreliable and unable to truly reflect the capabilities of LLMs.
Uncheatable Eval addresses this issue by testing LLMs on real-time, newly generated data from the internet,
ensuring that the evaluation is immune to data leaks and cannot be gamed.
## How?
Uncheatable Eval assesses the language modeling capabilities of LLMs on new data from various sources such as recent papers on arXiv, new projects on GitHub, news articles, and more. Since this data is brand new (e.g., from the past 1-2 weeks), it is impossible for these data to be included in the training sets of publicly released models, thus avoiding the impact of unintentional or intentional data leaks.
Specifically, we calculate the sum of negative log probabilities of the models on these texts. In other words, models that are more likely to generate these texts are considered better.
*Note* : Uncheatable Eval only tests base models.
## Q&A
### Why Calculate the Sum of Negative Log Probabilities?
First, the goal of language models, at least today's language models, is to generate text that is as realistic as possible, maximizing the probability of real text. They are trained and designed to do exactly this. Calculating the sum of negative log probabilities on real text is the most direct way to test this capability.
Second, from the perspective of "compression is intelligence," a good way to test a language model would be to use the model with an entropy coding algorithm for compression and test the model's compression rate [[1]](https://arxiv.org/abs/2309.10668)[[2]](https://arxiv.org/abs/2402.00861). A model with a lower compression rate is considered better. Using a language model + arithmetic coding as an example, it is easy to prove that a model's ability to compress a piece of text is proportional to the sum of its negative log probabilities on that text (see [proof](#proof-of-the-equivalence-between-compression-capability-and-negative-log-probability-sum)).
Therefore, the compression rate of a model can be directly calculated through the sum of negative log probabilities, and the method for this has been provided in `show_results_v2.ipynb`.
### Can Models Using Different Tokenizers Be Directly Compared?
Yes. When calculating the sum of negative log probabilities, we essentially treat the model + tokenizer as a single entity or system. As long as this system has a high probability of generating real text, we consider it better. From the perspective of compression, you can choose any tokenizer. From the compression rate perspective, we don't care; we only care about whether your system can compress the text more effectively.
### Is It Really Uncheatable? Can't I train my model on a large number of arXiv papers to improve its test performance on arXiv papers?
Uncheatable Eval's data sources currently include new arXiv papers, new GitHub projects, BBC news, AO3 fanfictions, and new Wikipedia entries, with more sources to be added in the future. If you genuinely achieve excellent results across these data by training extensively on these sources, I would consider you to have developed a genuinely good language model rather than cheating.
From my test results, accurately modeling these data is very challenging. I believe Uncheatable Eval more accurately reflects the value of every bit of data and computing you invest compared to other benchmarks. Models trained with more data and computing are almost always better, and there are no shortcuts. This is a key strength of Uncheatable Eval.
### Is This Too "Random"? Why Consider Random Texts from the Internet as Ground Truth?
This is why we choose rigorous and verified texts such as arXiv papers and news reports, which typically have better quality. Additionally, a round of Uncheatable Eval evaluates a model over millions of tokens, increasing the reliability of the results.
In fact, the model rankings obtained through Uncheatable Eval are very stable. For instance, the model ranked first in January's data is highly likely to remain first in February, March, April, May, and June, indicating that the data obtained through this method is sufficiently representative.
"""
def rename_columns(df):
df.columns = [col.rsplit('_', maxsplit=1)[0] for col in df.columns]
return df
def get_folders_matching_format(directory):
pattern = re.compile(r'^\d{4}-\d{2}$')
folders = []
if not os.path.exists(directory):
return folders
for item in os.listdir(directory):
full_path = os.path.join(directory, item)
if os.path.isdir(full_path) and pattern.match(item):
folders.append(full_path)
return folders
def get_unique_column_names(all_data):
# column_names = {}
#
# for folder_name, files in all_data.items():
# for file_name, sheets in files.items():
# for sheet_name, dataframe in sheets.items():
# for column in dataframe.columns:
# if column not in ['Name', 'Average (The lower the better)', 'Parameters Count (B)']:
# column_names[column] = None
#
# return list(column_names.keys())
return ['ao3_\u200benglish', 'bbc_\u200bnews', 'wikipedia_\u200benglish', 'arxiv_\u200bcomputer_\u200bscience',
'arxiv_\u200bphysics', 'github_\u200bcpp', 'github_\u200bpython']
def color_cell(value):
return 'background-color: #fffdd0' if pd.notna(value) else 'default'
def update_table(period: str,
models: list,
metric: str,
visible_columns: list,
color_columns: list,
sort_by: str = 'Average (The lower the better)',
ascending: bool = True):
target_data = all_data[period]
target_metric = metric_to_sheet[metric]
if models:
target_model_size = [model_size_to_file_name[model] for model in models]
combined_data = pd.concat([target_data[model][target_metric] for model in target_model_size], axis=0)
combined_data['Name'] = combined_data['Name'].apply(lambda x: x.replace('.pth', ''))
combined_data.reset_index(drop=True, inplace=True)
if 'Average (The lower the better)' in combined_data.columns:
relevant_columns = [col for col in visible_columns if
col not in ['Name', 'Parameters Count (B)', 'Average (The lower the better)']]
combined_data['Average (The lower the better)'] = round(combined_data[relevant_columns].mean(axis=1), 3)
sorted_data = combined_data.sort_values(by=sort_by, ascending=ascending)
sorted_data = sorted_data.rename(columns={'Average (The lower the better)': 'Average (lower=better)'})
visible_columns = ['Name', 'Parameters Count (B)', 'Average (lower=better)'] + visible_columns
filtered_data = sorted_data[visible_columns]
filtered_data.columns = [col.replace('_', ' ') for col in filtered_data.columns]
formatter = {col: "{:.3f}" for col in filtered_data.columns if
filtered_data[col].dtype in ['float64', 'float32']}
def color_column(s):
return ['background-color: #fffdd0' if pd.notna(x) else 'default' for x in s]
# color gradient
colors = ["#63be7b", "#ffffff", "#f8696b"]
cmap = LinearSegmentedColormap.from_list("custom_cmap", colors)
target_color_columns = []
if 'Average' in color_columns:
target_color_columns.append('Average (lower=better)')
if 'Individual Tests' in color_columns:
target_color_columns.extend([col for col in filtered_data.columns if
col not in ['Name', 'Parameters Count (B)', 'Average (lower=better)']])
# styler = filtered_data.style.format(formatter).background_gradient(
# cmap=cmap,
# subset=target_color_columns,
# vmin=min_value,
# vmax=max_value
# ).apply(color_column, subset=['Parameters Count (B)'])
# for better visualization
vmin = {}
vmax = {}
for column in filtered_data.columns:
if column in ['Name', 'Parameters Count (B)']:
continue
col_values = filtered_data[column]
second_largest = col_values.nlargest(2).iloc[-1]
vmin[column] = col_values.min()
vmax[column] = second_largest
target_color_columns = []
if 'Average' in color_columns:
target_color_columns.append('Average (lower=better)')
if 'Individual Tests' in color_columns:
target_color_columns.extend([col for col in filtered_data.columns if
col not in ['Name', 'Parameters Count (B)', 'Average (lower=better)']])
styler = filtered_data.style.format(formatter).map(color_cell, subset=['Parameters Count (B)'])
for column in target_color_columns:
styler = styler.background_gradient(cmap=cmap, subset=[column], vmin=vmin[column], vmax=vmax[column])
return styler
else:
return pd.DataFrame()
def check_model_exists(model_id):
api = HfApi()
try:
model_info = api.model_info(model_id)
return "Exists and is accessible"
except GatedRepoError:
return "Exists but is restricted"
except HTTPError as e:
if e.response.status_code == 404:
return "Does not exist"
else:
return "Error: " + str(e)
def submit_model(name):
if 'Exists' not in check_model_exists(name):
return f"# ERROR: Model {name} does not exist on Hugging Face!"
try:
response = requests.post(webhook_url, json={"content": name})
if response.status_code == 200:
response_data = response.json()
if response_data.get('status') == 'success':
return "# SUCCESS: We will check the model as soon as possible. Thank you for your submission!"
else:
return f"# ERROR: {response_data.get('message', 'Unknown error')}"
else:
return f"# ERROR: Failed to submit model {name}. Server returned status code {response.status_code}."
except requests.exceptions.HTTPError:
return "# ERROR: Network error while contacting queue. Please try again in a few minutes."
except Exception as e:
print(e)
return "ERROR: Unexpected error. Please try again later."
all_data = {}
time_list = []
for folder in get_folders_matching_format('data'):
folder_name = os.path.basename(folder)
time_list.append(folder_name)
if all_data.get(folder) is None:
all_data[folder_name] = {}
for file_name in file_name_list:
if all_data.get(file_name) is None:
all_data[folder_name][file_name] = {}
for sheet_name in sheet_name_list:
final_file_name = os.path.join(folder, file_name)
all_data[folder_name][file_name][sheet_name] = rename_columns(
pd.read_excel(final_file_name + '.xlsx', sheet_name=sheet_name))
# def create_scaling_plot(all_data, period):
# selected_columns = ['Name', 'Parameters Count (B)', 'Average (The lower the better)']
# target_data = all_data[period]
# new_df = pd.DataFrame()
#
# for size in target_data.keys():
# new_df = pd.concat([new_df, target_data[size]['cr'].loc[:, selected_columns]], axis=0)
#
# new_df.rename(columns={
# 'Parameters Count (B)': 'Params(B)',
# 'Average (The lower the better)': 'Compression Rate (%)'
# }, inplace=True)
#
# fig = px.scatter(new_df,
# x='Params(B)',
# y='Compression Rate (%)',
# title='Compression Rate Scaling Law',
# hover_name='Name'
# )
# fig.update_traces(marker=dict(size=12))
# return fig
def create_scaling_plot(all_data, period):
selected_columns = ['Name', 'Parameters Count (B)', 'Average (The lower the better)']
target_data = all_data[period]
new_df = pd.DataFrame()
for size in target_data.keys():
new_df = pd.concat([new_df, target_data[size]['cr'].loc[:, selected_columns]], axis=0)
new_df.rename(columns={
'Parameters Count (B)': 'Params(B)',
'Average (The lower the better)': 'Compression Rate (%)'
}, inplace=True)
new_df['Log Params(B)'] = np.log(new_df['Params(B)'])
new_df['Log Compression Rate (%)'] = np.log(new_df['Compression Rate (%)'])
fig = px.scatter(new_df,
x='Log Params(B)',
y='Log Compression Rate (%)',
title='Compression Rate Scaling Law',
hover_name='Name',
custom_data=['Params(B)', 'Compression Rate (%)']
)
fig.update_traces(
hovertemplate="<b>%{hovertext}</b><br>Params(B): %{customdata[0]:.2f} B<br>Compression Rate (%): %{customdata[1]:.2f}<extra></extra>"
)
names_to_connect = ['Meta-Llama-3-8B',
'stablelm-3b-4e1t',
'Qwen2-1.5B',
'TinyLlama-1.1B-intermediate-step-1431k-3T']
connection_points = new_df[new_df['Name'].isin(names_to_connect)]
new_df['Color'] = new_df['Name'].apply(lambda name: '#39C5BB' if name in names_to_connect else '#636efa')
fig.update_traces(marker=dict(color=new_df['Color']))
X = connection_points['Log Params(B)'].values.reshape(-1, 1)
y = connection_points['Log Compression Rate (%)'].values
model = LinearRegression().fit(X, y)
x_min = connection_points['Log Params(B)'].min()
x_max = connection_points['Log Params(B)'].max()
extended_x = np.linspace(x_min, x_max * 1.25, 100)
extended_x_original = np.exp(extended_x)
trend_line_y = model.predict(extended_x.reshape(-1, 1))
trend_line_y_original = np.exp(trend_line_y)
trend_line = go.Scatter(
x=extended_x,
y=trend_line_y,
mode='lines',
line=dict(color='skyblue', dash='dash'),
name='Trend Line',
hovertemplate='<b>Params(B):</b> %{customdata[0]:.2f}<br>' +
'<b>Compression Rate (%):</b> %{customdata[1]:.2f}<extra></extra>',
customdata=np.stack((extended_x_original, trend_line_y_original), axis=-1)
)
fig.add_trace(trend_line)
x_min = new_df['Params(B)'].min()
x_max = new_df['Params(B)'].max()
x_tick_vals = np.geomspace(x_min, x_max, num=5)
x_tick_text = [f"{val:.1f}" for val in x_tick_vals]
y_min = new_df['Compression Rate (%)'].min()
y_max = new_df['Compression Rate (%)'].max()
y_tick_vals = np.geomspace(y_min, y_max, num=5)
y_tick_text = [f"{val:.1f}" for val in y_tick_vals]
fig.update_xaxes(tickvals=np.log(x_tick_vals), ticktext=x_tick_text, title='Params(B)')
fig.update_yaxes(tickvals=np.log(y_tick_vals), ticktext=y_tick_text, title='Compression Rate (%)', autorange='reversed')
fig.update_layout(
xaxis=dict(showgrid=True, zeroline=False),
yaxis=dict(showgrid=True, zeroline=False)
)
fig.update_traces(marker=dict(size=12))
return fig
initial_fig = create_scaling_plot(all_data, time_list[-1])
initial_period = time_list[-1]
initial_models = model_size_list
initial_metric = metric_list[0]
initial_columns = get_unique_column_names(all_data)
initial_colors = ['Average']
initial_data = update_table(initial_period, initial_models, initial_metric, initial_columns, initial_colors)
css = '''
.gradio-container {
max-width: 95% !important;
}
.tab-buttons button {
font-size: 1.3em;
}
.gr-dataframe th {
white-space: normal;
word-break: break-word;
}
'''
with gr.Blocks(css=css) as demo:
gr.HTML('<h1 style="text-align:center"><span style="font-size:1.3em">π LLM Compression Leaderboard</span></h1>')
gr.HTML(
"<h1 style='text-align:center'><span style='font-size:0.8em'>Welcome to Uncheatable Eval LLM Compression Leaderboard, where fancy fine-tuning and cheating wonβt work π«; only compute π», data π, and real innovation π₯ can prevail!</span></h1>")
with gr.Tabs() as tabs:
with gr.Tab("π Leaderboard"):
with gr.Row():
with gr.Column():
period_selector = gr.Dropdown(label="Period", choices=time_list, value=time_list[0])
model_selector = gr.CheckboxGroup(label="Model", choices=model_size_list, value=model_size_list)
metric_selector = gr.Dropdown(label="Metric", choices=metric_list, value=metric_list[0])
with gr.Column():
color_selector = gr.CheckboxGroup(label="Colored Columns",
choices=['Average', 'Individual Tests'],
value=['Average'])
colfilter = gr.CheckboxGroup(label="Data Source",
choices=get_unique_column_names(all_data),
value=get_unique_column_names(all_data))
table = gr.Dataframe(initial_data, column_widths=[130, 60, 60, 35, 35, 40, 40, 35, 35, 35],
wrap=True,
height=800,
)
period_selector.change(update_table,
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector],
outputs=table)
model_selector.change(update_table,
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector],
outputs=table)
metric_selector.change(update_table,
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector],
outputs=table)
colfilter.change(update_table,
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector],
outputs=table)
color_selector.change(update_table,
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector],
outputs=table)
with gr.Tab("π MultiLang"):
gr.Markdown("## Coming soon...")
with gr.Tab("π Scaling Law"):
period_selector_2 = gr.Dropdown(label="Period", choices=time_list, value=time_list[0])
def update_plot(period):
new_fig = create_scaling_plot(all_data, period)
return new_fig
plot = gr.Plot(initial_fig)
period_selector_2.change(update_plot, inputs=period_selector_2, outputs=plot)
with gr.Tab("βΉοΈ About"):
gr.Markdown(about_md)
with gr.Tab("π Submit"):
with gr.Group():
with gr.Row():
model_name = gr.Textbox(max_lines=1,
placeholder="Enter model name...",
show_label=False,
scale=4)
submit = gr.Button("Submit", variant="primary", scale=0)
output = gr.Markdown(
"# Enter a public HF repo id, then hit Submit to add it to the evaluation queue.")
submit.click(fn=submit_model, inputs=model_name, outputs=output)
demo.launch()
|